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Abstract

The discipline of political science is undergoing a great methodological transformation. As is

often the case, this transformation is being spurred by changes in technology. The application

of computational methods to the study of political science has a long tradition, but only in the

last few years has there been so much opportunity for disciplinary innovation at the confluence

of core political science research problems and computational methods. The following thesis

reviews three primary technologies that are rapidly changing the way political science research

is being conducted, and through explicit experimentation attempts to highlight their value to

the discipline.

The first chapter attempts to understand how the ex ante structure of social networks can

influence how agents play collective action games. Traditionally, one might interrogate this line

of research through fieldwork, or lab experiments; however, my approach is to build a computer

simulation to test many more networks. These simulations show that these structures have a

strong and meaningful effect on how agents play these games.

The second chapter seeks to understand how social networks change over time. To do this,

I specify a new method for modeling this change based on graph motifs, and introduce software

for generating networks this way. First, the model is tested against a set of classic generative
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network models. Then, a time-series dataset of a large social network is collected to test how

well the method can model change in a real-world network. The method performs well at

generating both theoretical and real-world networks.

In the final chapter I address the classic political science problem of generating quantitative

values from qualitative text data. The innovative technology introduced here is crowd-sourcing,

in which a large pool of non-experts collectively contribute small amounts of work to a large

coding project. In contrast to traditional methods of hand-coding, or automated machine

coding, I show how crowd-sourcing is a viable – and in some ways – superior method for

encoding text data.

It is critical that the discipline begin to engage with new computational methods now in

order to further develop methodologically.
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Applications of computational

Methods in Political Science

The popular narrative within much of political science is that the application of computational

methods is a relatively new phenomenon. The fact is, however, computational methods have

been apart of the discipline as long as computers have been readily available to researchers.

Thirty years ago John Chamberlin used linear programming to approximate the solutions to

social choice theories of voting manipulation (Chamberlin, 1982). Later in the same decade,

theories of computational complexity were used to to test what mechanism could be imple-

mented to protect the integrity of voting models (Bartholdi III et al., 1989).

Since then, there have been countless examples of computational methods being used to

pursue questions of collective action and decision making. Simulations have been designed

to test the empirical implications of Condorcet’s voting paradox (Tangian, 2000). Likewise,

computational models have been designed to test how classic political science theories, such

as the spread of the “democratic peace” (Cederman, 2001), or the size and magnitude of wars

(Cederman, 2003) can evolve over time and space.
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Generative methods, such as agent-based models (ABM), have become very popular as a

method for testing the emergence of many different kinds of observed behavior. ABM have been

used to model various types of voting behaviors; including, the emergence of political party

competition (Laver and Benoit, 2003; Laver and Sergenti, 2011); to test voting systems (Barkan

et al., 2006); and, to analyze voter calculus (Kim et al., 2010). Generative models have also

been developed to test the assumptions of experts forecasting the outcomes of international

disputes (Sylvan et al., 2004), and when individuals participate in rebellion (Bhavnani and

Ross, 2003).

Despite all of this research, however, there remains a conspicuous lack of computational

methodology being applied and developed for political science; especially, when compared to

the application and development of other techniques. Moreover, these methods are almost

never taught as part of core graduate training, and where available they are relegated to

special-edition seminars for advanced graduate students or faculty. Given their demonstrated

value; why then, does there continue to be a lack of momentum for widespread adoption and

training?

Early in the history of their application a shared belief emerged from the discipline that as-

serted computational methods were used as a substitute for well-specified formal models (Taber

and Timpone, 1996). This narrative is typically assembled in the following way: computational

methods are incorporated when the reseacher(s) ignore well-known theoretical solutions, or fail

to adequately deliberate on the construction of a formal model to represent the phenomenon

of interest. As such, the computational model is at best a temporary scaffolding easily torn

down by an as-yet specified formal model – or at worst – the direct result of carelessness by

the research in his or her review of the formal literature.

2
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It is in large part because of these beliefs that computational methodology remains a

sparsely populated island within political science. This belief, however, is the unfortunate

result of a lack of understanding as to the purposeful motivation for the use of these tools by

their critics; while at the same times, the non-systematic implementation of these methods by

some entrepreneurial researchers. The development and application of computational meth-

ods are independent research lines within the discipline, and should be considered as such.

Rather than replacements or substitutes, computational tools will continue to provide alterna-

tive means for addressing current problems of interest. In addition, these methods may well

be better suited to address many future research areas of interest.

The application of computational methods to political science is the focus of this thesis.

In the following chapters several different types of computational methods are used to address

core research questions, and methodological challenges, to political science. The focus of this

introduction is to begin by defining a broad set of tools that belong to computational method-

ology. The narrow focus on generative models deeply harms the discipline, and is unwarranted

given the breadth of possible applications. In the following sections I discuss various methods

that are a part of computational methods in political science.

Within each of these sections, the method being discussed is linked to the work of one of the

these chapters. By way of specific political science problems, each chapter highlights how these

methods can be implemented and applied. The thesis conclusion posits how this cumulative

work reflects on the future application of computational methods in political science.

3
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Generative Political Science

As was alluded to, for many political scientists “computational methods” is synonymous with

“computational models”, which itself is simply a more general term for “agent-based modeling”.

Given their reputation as an inferior replacement for an otherwise well-specified formal model,

this association pulls down with it all of computational political science. First, agent-based

models are an extremely powerful tool for social scientists, and their construction and execution

has been studied widely in the social sciences (Epstein and Axtell, 1996; Epstein, 2006; Miller,

2007). They represent, however, only a fraction of the entire computational methodology

toolkit.

Second, as with any tool, ABM are best used when the comparative advantage features of

the tool match the designs of the experiment or research area. ABM, or generative models, are

best used under two general cases: as a bridge to theory when observed phenomenon escape

immediate modeling; or, when the reality of collecting observation proves very difficult, or

impossible.

Theoretical models are often – and rightly – preferred because their results are static. As

scientist we prefer a result that will not change with the addition of new variables, or reimple-

mentation of a model. There are many phenomena, however, that are difficult or intractable,

to solve analytically. In these cases a generative model can be developed to model the phe-

nomenon, then observe behavior, and allow researchers to move closer to a well-specified model.

Rather than the “all, or nothing” narrative often cited by those claiming computational mod-

els are careless replacements, ABM are extraordinarily useful instruments for moving research

forward, and closer to a formal model if that is the final goal.

4
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For example, in (Bianco et al., 2004), a generative model is specified to explore the possible

sets of “enactable” outcomes in social choice situations. Upon reviewing the results of the

model, the authors then specify a formal model based on learning gleaned from the generative

model, and support it with a proof. Later, (Miller, 2007) extend this work by exploring the

results of the generative model further to specify additional formal models of social choice

situations. Here the generative model provides a bridge to theory, and produces additional

theoretical observations in the process. This pattern is very valuable, and imminently repeat-

able.

In the second situation, where collecting observational data is very difficult or impossible,

generative models provide stylized insight where none could be provided before. This type

of modeling is standard operating procedure for many disciplines to which social scientists

often look with great reverence; such as, physics, biology, chemistry, where the phenomenon of

interest simply cannot be observed or instrumented. Instead, generative models and simulations

are used to generate approximations of the phenomenon. The social sciences should be equally

as welcoming of these methods, as many phenomena of interest are considerably more difficult

to observe than those of our colleagues in the hard sciences.

In Chapter 1, “Networks, Collective Action, and State Formation,” the focus is on how ex

ante social structure imposed on agents affects their behavior when playing a stylized provi-

sion point public goods game. In this case, it is not possible to impose social structure on

individuals naturally, and then observe behavior. As such the methodological choice for such

work is between laboratory experiment or a generative model. In this case I chose a generative

model because it allowed me to test a far greater number of agents, with many more network

configurations, than would have been possible in a laboratory.

5
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The work in Chapter 1 also deals with the study of complex networks. In the next sec-

tion I discuss how the study of networks provides ample opportunity for the incorporation of

computational methods.

Complex Networks

Throughout this thesis there are references to the increasing amount of political science research

focusing on the study of complex networks. The length of Bibliography is a testament to

the amount of research being done in this sub-field. Much of this work is either based on

the statistical analysis of observed networks, or the advancement of statistical methods for

analyzing static networks.

In both cases the network structure is often taken as given and static. The structure of

real-world networks; particularly, those of interest to political science, have complex dynamic

properties. It is extremely difficult to model the structural dynamics of complex networks be-

cause of the dependency structures present in these systems. Rather than relying on statistical

models, computational models can be used to specify generative models of network dynamics.

In Chapter 1, “Modeling Network Structure Using Graph Motifs,” a novel approach to mod-

eling complex network dynamics is proposed. This approach relies on computational methods

for counting the number of isomorphic components that exists in a given network for a set of

graph motifs. Using the graph motif modeling approach described in the chapter, a series of

simulations are conducted as a test of the model’s ability to approximate the growth dynamics

of real-world networks.

While simulation is central to the work of both Chapters 1 and 2 – and much of compu-

6
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tational political science – there are many computational methods beyond simulation. In this

final section I describe the use of crowd-sourcing as an alternative to the traditional laboratory.

Crowd-sourcing

A large portion of empirical political science relies on the use of data that has been generated

via human interpretation. This often takes that form of some coding task, wherein a research

assistant reads some text, or views some picture/video, and then categorizes or codes this item.

This process has proved extremely valuable, as a vast amount of empirical work as been done

using data generated this way.

Along with this value, however, come many costs. Both from a resources and time perspec-

tive; but also the reliability of the data generated. One of the primary benefits of incorporating

computational methods into any research agenda is their low-cost and scalability, relatively to

human labor. A significant negative of purely computational methods for data coding are the

validity of codings. Thus, the challenge for innovative computational method of data coding

is finding ways of using the tools that improve the scalability of human coders, without losing

the benefits of reliability and interpretation that come from human intelligence.

In Chapter 3, “Methods for Collecting Large-scale Non-expert Text Coding,” I describe a

series of experiments conducted to assess the viability of using crowd-sourcing as an alternative

laboratory for conducting large-scale coding tasks such as this. In this case there is no “model,”

but rather an exposition on methodology for using crowd-sourcing itself as a computational

method. This serves as a single example of how computational methods, not simply models,

can be applied to the study of political science.

7
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Chapter 1

Networks, Collective Action, and

State Formation

The notion of state building is a challenging concept to represent in concrete terms. It is most

often thought of either relating to the levying of taxes (Besley, 2009; Besley and Persson, 2008) –

particularly with respect to building a military – or through the ability of a state to successfully

enforce contracts (Besley and Persson, 2010). Many authors have focused on these issues, and

this scholarship has done well to show the importance of investment in various infrastructures

to sustain markets. While valuable in their contribution to our general understanding of the

role of state capacity in stable governance there are preliminary stages of the process that must

also be considered.

Many models examining state capacity assume the state itself as a primitive element. That

is, the implicit assumption is that a state upon which to build capacity already exists. Clearly
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this assumption is reasonable, however, it is important to consider that at some early point the

collective decision to form a state had to be made. Part of this decision involves capacity, as

there are varying levels to which individuals can contribute to the public good of the state; but

more importantly, it involves the group dynamics among individuals and their influence over

the collective act. As such, when considering how individuals collectively decide to establish

a formal institution – such as a state – the role of informal institutions, e.g., social networks,

is paramount. Abstractly, the germination of a state may be thought of as the transition of

these informal institutions into formal ones; therefore, the mechanisms of this transition are of

interest.

More generally, is the question of why do some efforts to make this transition succeed,

while others fail? There are many examples of citizens emerging from relative destitution to

establish and build state capacity. Likewise, there are examples of failure, where it seems

states are incapable of collectively establishing and building a state. From the establishment

of ancient Greek (Hornblower, 1992) and Roman republics (Lintott, 2003), to the reemergence

of Japan and Germany after World War II and the post-colonial success of India’s democracy

(Khilnani, 1992), there is vast historical evidence for the ability of citizens collectively transition

informal institutions to formal states, and build capacity. For many other countries, however,

this transition has yet to succeed.

While there are far fewer examples of countries that have not successfully made this transi-

tion, the challenge of “failed states” remains paramount in both academic and policy research.

Unfortunately, the mechanisms of this variance remain a puzzle. Perhaps the difference is

third-party intervention or the presence of a “great power” in facilitating the transition? The

conflicts in the former Yugoslavia and Somalia, however, provide contrary evidence. In both
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cases the United Nations initiated large-scale interventions, and while the success of these inter-

ventions can be disputed, what cannot is that nations of the former Yugoslavia have successfully

transitioned, while Somalia has clearly now.

Alternatively, it has been proposed that variation in colonial history, and differences in

institutional investment by colonial powers, explain the comparative levels of development

(Acemoglu et al., 2001) among former colony states. While there is strong evidence to sup-

port this claim, the comparison begins with the assumption that colonial powers initiated the

collective action to build a state; albeit with high variance in quality. This, however, does

not explain the transition to formal institutions in the context of the history of countries like

Afghanistan, which has a rich and mixed history of colonialism but currently languishes with

a weak state bolstered by a foreign military.

Likewise, differences in ethnic diversity (Alesina, 2005), intrastate violence (Condra et al.,

2010), or region show equally mixed outcomes. What has lacked exploration up to this point

is how the structure of informal institutions, i.e., actors’ social networks, contribute to these

transitions. The initial conditions of informal institutions may play a critical role in the eventual

success or failure of a burgeoning state. Social networks are a useful representation of informal

institutions, in the context of state formation the initial conditions for social networks include

the structural features and types of individuals within these networks. There is a dearth of

micro-level data on social networks – particularly in places that lack formal institutions –

making it very difficult to test the significance of networks in these circumstances.

The notion that individuals do not make political decision in a vacuum is well known,

but only recently has social stricture been considered as a meaningful factor in the outcome of

collective action (Siegel, 2009; Fowler, 2005). The interactions among individuals facilitated by
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networks can help actors form beliefs about the process of transition to formalized institutions,

which forms the central focus of this research. In the following paper I consider the collective

decision to form a state as a threshold public goods game. First, as as simple static model to

establish a basic framework for the interactions, and then as network variant of the game. To

begin, the role of informal networks in Afghanistan is discussed as an example of their influence

in the process of state germination. Next, I introduce the basic provision point model, which

is followed by a brief discussion of equilibria. Then, the network variant is introduced and a

computational model is developed to test it. Computational modeling is used here as a means to

incorporate additional assumptions about the behavior of the agents. Specifically, how signals

transmitted over social networks affects the game’s outcome. These network assumptions create

higher-order complexity that is best modeled computationally. In the final sections the results

of these simulations are presented, with a discussion and conclusions.

1.1 The role of networks in state building

In a 2010 white paper published by the Afghanistan Research and Evaluation Unit (AREU)1,

entitled “Afghanistan Livelihood Trajectories: Evidence from Badakhshan” the author de-

scribes the importance of informal institutions in Afghanistan (Pain, 2010):

First, from a conceptual viewpoint, the key components of a country’s institutional

landscape can be characterized as the state, the market, the village and the house-

hold. However, Afghanistan has a complex and spatially variable institutional

structure outside of the state and the market; this includes structures that may

1The Afghanistan Research and Evaluation Unit (AREU) is an independent research institute based in
Kabul. http://www.areu.org.af/
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unite or divide villages such as ethnicity, tribe, qawm and mantiqua. A qawm is a

form of solidarity that may be based on kinship, residence or occupation that can

cross tribal and even ethnic boundaries; a mantiqua is a variable unit of social and

territorial space that may unite people across villages. All these entities, to vary-

ing degrees and in different ways, establish rules and norms that regulate people’s

actions and moderate the workings and influence of other institutions. Much of

the state-building effort in Afghanistan has focused on the architecture and perfor-

mance of the state and its constituent parts and to a lesser degree on markets. But

the nature and role of the multilayered institutions outside the state and market,

and particularly those of the village and household, have been of less interest.

The above quotation indicates that the importance of informal institutions in Afghanistan

may be equal or superior to that of formal institutions. While the focus here is on their role

in Afghanistan, informal institutions are equally powerful in other parts of the developing

world (Thies, 2009; Levitsky and Helmke, 2006). Given their prominence, the study of state

germination should begin by considering the structure of informal institutions, and how these

structures affect outcomes. As stated above, social networks are a natural representation of

these institutions, and thus are useful focal point for an analysis. Social networks can have

multiple institutional functions, such as simple neighbor relationships; wherein local informa-

tion is exchanged, or as market relationships; wherein goods and services are exchanged via

network ties.

In Afghanistan, social networks form the foundation of political and social life. In a different

report compiled by AREU on the power of social networks in determining the political outcomes

the author notes (Coburn, 2010):
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...personal relationships are still the most important aspect of local politics. Indi-

vidual ties with local elders and maliks are often based upon marriage, land use

and business. As long as these ties continue to have economic and political import

in the daily lives of voters, there is little incentive for these voters to approach other

networks with which they do not have such intimate relationships.

By focusing on networks it is possible to investigate what factors in their structure are most

influential in the transition from informal to formal institutions. Below, various network types

are used to explore how social structure affects the level of contribution to a provision point

public goods game. This game is presented as a model of state formation where players must

decide how much of their own personal wealth to contribute to the state as function of their

type and the information they receive from their network neighbors.

The decision to model the network variant of the game computationally is based on the

desire to explicitly model actor networks and measure variation in outcomes based on these

networks. While analytical results are always preferred to simulated estimates, the basic pro-

vision point model described below is very simple and lacks the assumptions required to model

these relationships. The relationships described in the quotations above involve high-order

complexity at varying levels of social interaction. The assumption that actor networks con-

tribute directly to the outcome of the game, and that these can vary; therefore, requires a more

flexible modeling framework.

In an attempt to more fully model this inherent complexity a computational model is devel-

oped. An effort is made to minimize the addition of unnecessary parameters and assumptions

in the computational model in order to keep it as close to the analytical foundation that it is

built upon.
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1.2 Basic model of state building

In the following section I construct a basic threshold public goods; or more precisely, provision-

point public goods game. The following game follows closely the form introduced by Palfrey

and Rosenthal (Palfrey and Rosenthal, 1984). Unlike the Palfrey and Rosenthal game, but

following the experimental work of Cadsby and Maynes (Cadsby and Maynes, 1999), this game

incorporates a continuous – but bound – contribution choice for each player.

1. For some state with N citizens, each has an equal endowment of personal wealth denoted

y.

2. Citizens can elect to contribute some proportion of their wealth to a public good, denoted

ci where c ∈ [0, 1] where an individual’s contribution is yci.

3. The public good will only be provided if common-knowledge w contributions are made,

e.g., the threshold for public good provision is w ≥ m where w =
∑N
i=1 ci. Also, the

quality of the public good is increasing in the amount of wealth contributed by its citizens,

but contributions that fails to meet the threshold are not “refunded”.2

There are a few additional assumptions; first, the population wide shared cost of providing

this public good is always less than the benefit gained from the good, or w
N < 1 ≤ m

w . Also,

assume that y < m, or that the contribution of a single citizen will not be sufficient to meet

the threshold. From this game, the following payoff matrix for agent i is specified as a function

of both ci and m in Table 1.1.

2For a discussion of threshold public goods game using a refund mechanism, see (Marks and Croson, 1998;
Rondeau et al., 1999)
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ci > 0 ci = 0

w ≥ m m
w − yci

m
w

w < m −yci 0

Table 1.1: Payoff matrix for Ui given some individual level of contribution (ci) and collective
resources put toward public good (m)

In this case, the public good is represented by m
w , so as the amount of contributors increases

beyond the threshold so does the shared benefit, and hence the provision-point specification.

A citizen’s decision, therefore, is whether or not to contribute, and if so how much. Given

the duality of this choice, a citizen’s utility is dependent first on whether to contribute to

state building, which itself depends on whether the sum of contribution by all citizens was

adequate to meet the provision point. Using the continuous contribution specification there

are an infinite set of possible equilibria, however, below several are discussed.

1.2.1 Equilibria of basic game

As in Cadsby and Maynes, there are two straightforward symmetric pure-strategy Nash equilib-

ria. The first is the complete defection equilibrium where no citizens contribute, or ci = 0∀i ∈

N . Clearly, if a citizen believes that all others will attempt to free-ride and shirk contributing

then that citizen will be made strictly worse off by contributing any ci > 0, and thus complete

defection is an equilibrium. Likewise, the second symmetric equilibria is the fully cooperative

situation, wherein each citizen contributes exactly ci = w
N . As before, if a citizen believes

that all other players are contributing w
N , consider the decision of that citizen. The level of

contributions is
(
w
N

)
(N − 1); therefore, that citizen’s contribution is pivotal in providing the

public good. By assumption w
N < 1 ≤ m

w , and as such the pivotal citizen will be made strictly

better off by contributing exactly what is necessary to meet the threshold.
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Moving beyond the symmetric equilibria to the asymmetric where some set of citizens are

not contributing while others are, with possible heterogeneity among contribution levels in the

latter set. With the possibility of continuous choice there are an infinite number of asymmetric

equilibria that meet the threshold constraint. Likewise, there are an infinite number of mixed-

strategy equilibria wherein players randomize contributions. Each case, however, is a so-called

knife-edge equilibrium, where some pivotal agent will only contribute given some supporting

beliefs about the others players contribution levels and c∗i ≤ m
w . Put more simply, an agent

will only rationally contribute under asymmetric conditions when the expected benefit from

contributing is greater than the expected cost, which in this case is denoted with the previous

inequality.

The motivation for this simple model is to understand the dynamics under which we might

expect collective contributions to building a national defense. The above discussion has reiter-

ated previous findings that such collective action is expected under a wide range of conditions.

As discussed in the introduction, however, contemporary attempts at state formation have not

enjoyed such success. Furthermore, the experimental results of provision-point models of pub-

lic goods support the claim that over-provision is more likely than under (Epple and Romano,

1996). As such, it may be necessary to delve further into the model in order to understand the

factors contributing to these sub-optimal outcomes.

1.2.2 Moving toward a more complex model of public goods provi-

sions

The linchpin in this model is a citizen’s belief about the contributions of other players in the

game. As stated, there are an infinite number of equilibrium distributions of contribution
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among players, and therefore a rich set of outcomes for which the public good is provided.

A key assumption of the model that allows for these equilibria to arise is that all citizens

have uniform endowments. In practice, however, this is not true, with empirically observed

distributions of wealth following something akin to a Pareto (Newman, 2005). In addition,

while it may be true that citizens are aware of the necessary level of contribution needed to

meet the threshold for a public good, it is not clear that they are aware of their own level

of wealth relative to others, or the disposition of their neighbors to contribute. One way to

model the means by which these beliefs are generated is to use the information transmitted

over social networks to inform citizen prior to deciding if and how much to contribute.

Suppose that rather than existing in a vacuum, citizens exist on some plane wherein they

can create connections to other citizens. These connections then allow for the transmission

of information about both individual wealth and disposition to contribute to a public good.

An extension of the above model to include these dynamics would allow information from the

networks to alter a citizen’s belief about the state of the world with respect to its network

neighbors. Depending on the level of connectedness of a citizen, this information can be highly

constructive in leading to efficient equilibrium, or highly detrimental.

In studying how these interactions affect outcomes, however, there is a necessary change

in the analytical paradigm. The elegance of the closed form solutions proposed by Palfrey

and Rosenthal; and Cadsby and Maynes provides deep insight with minimal complication by

making broad simplification about agent interactions. As discussed above, however, these

assumption are too limiting when extending the game’s framework to include the transmission

of information through social networks. One approach to extending the model would be to

incorporate networks in terms of a cooperative game, and solve for equilibrium as such. This
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approach has been used extensively to model economic networks, and has illustrated how

equilibrium network structures can arise in games with heterogenous agent utility functions

(Jackson and van den Nouweland, 2005; Jackson, 2005 2008). The focus of this research,

however, approaches the question in reverse; where the cooperative games framework focuses

on how player types influence stable network structures, here the focus is on how both network

structures and player types influence provision outcomes.

In fact, the equilibrium behavior observed in cooperative network games does not apply

here, as this is a non-cooperative setting where the item of interest is the games’ outcomes

without appealing to equilibrium behavior. An alternative is to use generative models to

estimate the effects of various network structures, and the interactions among agent within

them on public goods provisions. As such, the networked variant described below does not

rely on equilibria; instead, a set of agent and network types common in the network literature

are used in a generative model to simulate a large repository of data for game outcomes given

variation in these network types. From this repository the effect of different combinations of

agent and network parameters can be measured.

1.3 Network variant of threshold public goods game

One of the primary contributions of social networks on a citizen’s calculus to contribute to a

public good is how the information exchanged alters their belief about the state of the world

with respect to their neighbors.3 In the case of the base threshold public goods model this

information may change a citizen’s belief about the necessary amount of contribution needed

3Here, the term ‘neighbors’ is used in the graph theoretic context, e.g., actors with whom an actor shares a
direct tie.
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to meet the threshold. As described above, an advantage of computational methods in this

context is the ability to explicitly mode agent networks; therefore, it is necessary to define a

citizen’s network and the the nature of the information that is exchanged.

An agent i’s network neighborhood is defined as the set of citizens with geodesic distance

one from i, i.e., a direct tie. All ties are symmetric, meaning that out-degree implies recip-

rocal in-degree and vice-a-versa.4 Formally, a citizen i has n neighbors where n ⊆ N , and

n = {j1, j2, ..., jn}. Note, agents only receive information from their immediate neighbors.

While in practice people may update their beliefs via information relayed from others, the

strength of localized information on both individual and collective decision making in social

networks has been shown to be tremendously strong, and thus an assumption well supported in

both theoretical and empirical studies of network influence (Granovetter, 1973; Christakis and

Fowler, 2007).5 The complete social network of all citizens is thus defined as the composition

of all individual network neighborhoods. With these basic structural assumptions in place it

is now possible for actors to ascertain two critical pieces of information via these relationships:

neighbor wealth and disposition to contribute.

A fundamental aspect of social interaction is the building of an individuals’s beliefs about

their relative standing within a group (Kerckhoff, 1995). As shown in the discussion of informal

networks in Afghanistan, this information can be critical when making political decisions, such

as voting. Within the context of personal or family wealth these networks are often used

as a means by which social stratification is assessed (Lin, 1999). Heterogeneity of wealth

4This model will be constructed as an undirected graph for simplicity; however, it is possible to implement
this model as a directed graph form. Though, it is unclear that this additional assumption would add insight,
as it is difficult to interpret the substantive meaning of a one-way social interactions.

5Extending the model to include global network information is non-trivial, and requires further assumptions
about the degradation and absorption of information as it passes at different depths through a network. Though
an abstraction, this localized model reduces the number of assumptions and allows for reasonable tractability.
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among citizens in any given population is natural, therefore, this process of belief updating is

reasonable. Then, it may be that as human social networks grow so too does a citizen’s belief’s

about their relative standing. The veracity of a citizen’s beliefs may in turn be a function of

their structural position within a social network, i.e., “better connected” citizens have more

informative beliefs about their economic status. In practice the revelation of this information

is noisy; as it is impossible to every know with certainty ones social standing. For simplicity,

however, in the networked model proposed here I assume a network tie provides a citizen with

perfect information about their neighbors’ endowments. A citizen, therefore, receives yj∀j ∈ n.

Further, consider how the game changes if along with economic information, prior to mak-

ing their decision each agent receives some signal about the disposition of their neighbors to

contribute. Again, borrowing the notation of Palfrey and Rosenthal, suppose that every neigh-

bor of agent i provides a signal as to their dispositions, denoted sj ∈ {0, 1} where si = 1

indicates the intention to contribute. As before, this dynamic is meant to model the process

of social communication, and its affect on individual decision making. While these signals are

clearly cheap talk, what is worth exploring is how various distributions of these signals and

their accompanying endowment affect decision making. To explore these dynamics it will be

necessary to model the interpretation of any combination of signal and information.

Given that each citizen is fully informed about the endowments of their neighbors, define

the total wealth within some citizen i’s network as Yi =
(∑n

j=1 yj

)
+yi. To use this information

to inform beliefs, assume the strategy of a networked citizen is based on the beliefs about the

contributions of their neighbors, or cj ; and thus, define cj =
(
yj
Yi

)
yj . The implicit assumption

is that citizen i believes a neighbor will contribute an amount proportional to their own wealth

vis-a-vis the neighborhood. It is now possible to rewrite networked beliefs, in terms of both sj
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and cj , as noted below in Equation 1.

mnet =

n∑
j=1

sjcj (1.1)

In this case, a citizen “takes their neighbor at his word”, and plays a strategy that assigns a

contribution of zero to those neighbors who signal they intend not to contribute and the network

neighborhood proportion to those that do. Figure 1.1 below is provided as a numerical example

how how networks affect beliefs.

(a) Agent i’s network

(b) Calculation of mnet for agent i

Figure 1.1: Numerical example of how network information affects beliefs

In the abstract this simple variant may provide little additional insight to how social net-

works affect public goods provision. In its application, however, it is possible to observe very

different outcomes given different initial condition of the model, such as the structures of social

networks and the distributions of wealth and disposition among citizens. Given the sensitivity

of outcomes to initial conditions, however, it is extremely important to note that result from

the computational model are not necessarily equilibrium based. Rather, by simulating a very
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large number of these initial conditions and comparing the results across a wide set of param-

eterizations it is possible to estimate the effect of different social structures and agent types

on public goods provisions. In order to generate the data necessary to measure these effects,

in the next section I present a generative computational model, where agents’ networks are

primitives of the game, which allows for a very thorough testing of possible initial conditions

and subsequent outcomes.

1.4 Testing the Network Variant

To test the network variant of this model I have designed a simple computational experiment,

which contains two basic objects: the agent, and the environment. Agent objects contain all

of the information described in the previous sections; specifically, some random endowment

of wealth drawn from Pareto distribution with the shape parameter α = 3.0, and a random

disposition to contribute drawn from ∼ U{0, 1}.6 Here I am also interested in the affect of

networks on beliefs and public goods provision, agents also form “ties” with other agents, a

topic I will discuss in more detail next. Finally, agents also have the ability to decide how

much contribution to make to the public good.

As is often the case in multi-agent systems approaches, it is useful to have heterogeneity

of types among agents (Laver and Benoit, 2003; Axelrod, 2006; Epstein, 2007). In doing so,

the model is able to capture the higher order complexity of differing decision making criteria

for actors, and also prevents the model from path dependent outcomes based on a single

parameterization of actor type (Bonabeau, 2002). The agent object in this model can take

on one of five types; with either a disposition to give to the public good, or not. The first is

6This particular parameterization of the Pareto is used as rough approximation of wealth distributions.
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the Altruistic type, which always gives w
2 of its wealth to the public good, regardless of the

information it is receiving from the network. This type is meant to model those individuals who

are committed to contributing to a public good no matter the group dynamics. Next, is the

Community type, which is equally giving but does so using information from their network. In

this case, however, rather than always giving the same fraction of wealth, a Community agent

will give whatever fraction of wealth is needed to supplement what they expect their neighbors

to give and reach the threshold.7

The next two types set their contribution levels explicitly as a function of information from

their network neighbors. The Max-match and Min-match set their contribution level to that

of their most and least generous neighbors respectively. These agents are meant to model the

social mimicry often observed in group dynamics – particularly with respect to charity (J.L.,

2003). These types are the most consequential in the experiments; and become the focus of the

analysis in the next section, as their contribution level is most closely related to their network

strucure. Finally, the Miserly type always give some small random fraction of their wealth.

Specially, the contribution is draw uniformly from cMiserly ∈ [0.0, 0.05]. To summarize, Table

1.2 below describes each agent types’ decision criterion for giving.

Agent Type Decision Criterion
Altruistic ci = 0.5
Community ci = m′ such that m′ +mnet = w
Min-match ci = min(mnet) for all neighbors of agent i
Max-match ci = max(mnet) for all neighbors of agent i
Miserly ci ∈ [0.0, 0.05]

Table 1.2: Agent types used in model, with contribution level decision criterion

The environment object is simply a container of agents, and is the abstract plane upon which

the game is played. From a practical standpoint, this is the primary computational object of

7In the case where this amount does not reach the threshold a Community agent will give all of their wealth.
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interest, as in each instance of the model an environment is filled with agents, wherein they set

their contribution levels. Environment objects also generate all of relevant data for each play

of the game. While a more technical description of the computational mechanics of the model

is provided in Appendix A, it is worth describing at a high-level briefly.8 The model is designed

to create a simulated “state” populated by isolated individuals. In order to model how social

networks affect an individual’s decision to contribute to a public good, at its instantiation the

model generates network ties among all the individuals in the model.

After this process of network formation is complete, the agents use their type- and network-

dependent decision criteria to set their contribution levels. These contributions are summed,

and if that sum is greater than or equal to the provision point the good is provided, other-

wise it is not. By default, the threshold point for all of the experiments described below is

m = 0.25(Y ), or 1
4 of the total wealth of a population. The model, however, supports any

parameterization of the provision point. In the following sections the implementation of the

network experiments are described, followed by a discussion of the results.9

1.4.1 The Computational Model: Five Experiments

Technically, the model has been designed to accommodate any network formed by a countable

vertex set10, but for the purposes of this paper I have limited the experiments to five different

types of network structures – each well known in the networks literature. In the first experiment

the binomial random graph model was used generate ties (Erdos and Renyi, 1961). This is the

8The software designed for this research is freely available for inspection and download here: http://github.
com/drewconway/StateBuilding. This repository includes the full model Python classes, as well as the R scripts
used to analyze the results. All classes are fully unit tested, to ensure consistency and accuracy of output.

9For each of the experiments described below 75,000 agent observations are generated.
10A configuration model is used to generate network ties from any valid degree sequence for the number of

actors being modeled. This method is a version of the configuration model described by Newman (Newman,
2003)
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most studied of all random graph models, and thus is a useful starting point and benchmark

for the remaining experiments. In this case, the purely random binomial model is used; the

probability of a dyad forming between any two actors is exactly 0.5. With this configuration

binomial random graphs have degree distributions with a “bell-shape” and exhibit high tie

density. It should be noted that these types of networks are very rarely observed in real social

networks, but again, given their well-known properties are useful benchmarks.

As a logical balance to the binomial network experiments, the next series generates networks

where degree is drawn from a uniform distribution. That is, every actor in the network has an

equal probability of having some some degree k such that 0 < k < N ties in the population.

Similarly to binomial networks, networks with degree sequences drawn from a uniform distri-

bution are very rarely observed in real social networks; however, networks with this property

are occasionally observed in biological networks (Arita, 2005). In the context of this research,

such networks may also be thought of as those existing in areas where local conditions, such

as rugged terrain, prevent groups from forming ties based on preference, but rather on some

external path dependence. This may be a good model for the types of country-wide networks

observed in places like Afghanistan, where such constraints are present.

In the next experiment the Pareto distribution was used to generate networks with “small-

world” properties (Watts and Strogatz, 1998).11 This is the first of the experiments where

the model has structural features observed in real social networks. The properties exhibit by

these networks are short diameters and high degree of clustering – often around central actors.

Likewise, the following experiments use a power-law distribution to generate networks with the

so-called “scale-free” property, which are also very often observed in large complex networks

11In this experiments the Pareto exponent was 1.0, which provides the desired structural features.
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(e.g., citation networks (Newman, 2001), sexual contact (Ergun, 2002) and the World Wide

Web (Albert et al., 1999)).

In the final experiment a specific preferential attachment mechanism is used to generate the

networks. Here, agents with high wealth parameters relative to the total wealth of the popula-

tion have a higher probability of forming a tie. These networks will exhibit similar structural

features to the power-law and Pareto networks, but rather than hubs forming randomly they

do so as a function of a specific agent parameter – wealth. This experiment is particularly

important as it models one natural mechanism by which a complex network of informal insti-

tutions might form. As a well studied mechanism for edge formation, preferential attachment

has been observed in many networks of informal institutions, but is perhaps exemplified in the

seminal work in this area by Padgett on the informal networks of the Medici family in Florence,

Italy during the 15th century (Padgett and Ansell, 1993). This Table 1.3 below summarizes

the network types used in the experiments.

Network Type Structural Properties Observed in Social Networks
Binomial “Bell-shaped” degree dist. No, a.k.a. Erdos-Renyi random graph
Uniform Actor ∼ equal No, occasionally in biological networks
Pareto High clustering, short diameter Yes, a.k.a “small-world” graph
Power-law Degree dist. left-skewed Yes, a.k.a. “scale-free” graph
Pref. attach Similar to power-law Yes, nodal attribute drives degree dist.

Table 1.3: Description of network types used in experiments

It is also important to note that these various network configuration were not chosen simply

for their well known properties. Rather, each represents possible structural features present

in local or tribal networks (save the binomial network) where information about public goods

provisions may be transmitted via social networks. In the case of Afghanistan discussed in

the introduction, the tribal networks could take any or of these forms, depending on the
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context of relationships. As mentioned, given the harsh terrain and long distances networks

with uniform degree distribution might form; whereby, the actors in each tribe or location

are densely connected to each other, but are not connected well outside of their immediate

physical space. Likewise, a more common hub-spoke structure could be present, such that

certain individuals or tribes are central to the network, acting as go-betweens to for other

actors, while the majority of actors have limited connectivity. The experiments presented here

are meant to provide evidence as to the effects of these structures on the outcomes of public

goods provisions.

The first useful descriptive statistic to inspect from the experimental data is to check that

the degree distributions of the models fit the expectations described in Table 1.3. In Figure

1.2 three of the overall degree distributions from the five experiments are provided.12 As

can be seen from this figure, the degree distributions from all of these networks matches the

expectation. The binomial networks have an overall distribution with a rough bell-shape, with

a modal degree of 60. The degree distribution generated by degree sequences drawn from a

uniform distribution is a bit less consistent, though generally following expectation.13 Finally,

the preferentially attachment networks have the highly skewed degree distribution expected

from this tie formation mechanism. The vast majority of agents have very low degree, with

modal degree of just one, while in the tail agents have up to 70 ties.

Next, to understand how networks affect public goods provision it may be useful to examine

how contribution levels varied across the experiments, and disaggregate this data by agent types

12The degree distributions for Pareto and power-law experiments are excluded because they follow almost
identically to that of the preferential attachment networks. For considerations of space, the graphs for these
networks have been omitted from all figures, however, high-resolution versions of all graphs generated from
these data are available here: http://github.com/drewconway/StateBuilding/tree/master/images/

13The reason for this discrepancy is the algorithm used to generate the uniform graphs does so by creating
tie sequences from a uniform distribution. As the number of agents here is fixed at 150, this adds random error
into the uniformity, which then shows up in the degree distributions.
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(a) Binomial (b) Uniform

(c) Pref. Attach

Figure 1.2: Degree distribution for all network types

and whether the public good was provided (henceforth referred to as the provision point). In

the next series of plots, data on the frequency of contribution levels for the three focal network

experiments are provided. In Figure 3 below, the frequency of giving (binned at intervals

of 0.1) is plotted for each of the five agent types (vertical), and split by the provision point

(horizontal).

The data on Altruistic types is forgone, as they will either give nothing – when their

disposition is such – or they will give exactly half. Likewise, Miserly types either give nothing
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or very little, while Community types give nothing or everything. The latter observation is

interesting, as it indicates that no Community agent received information that its neighbors

would contribute enough to the public good that would require them to give anything less than

all of their wealth. More interesting, however, are the variations in contributions from the Min-

and Max-match types across the different network configurations.

Starting with the binomial networks, we see that the density of the ties in these networks

causes predictable behavior from these types. In the Min-match cases, the data shows that

giving for these types is driven by neighbors with a disposition not to give, or Miserly neighbors

giving only very little. For the Max-match types the outcomes are similar, however, the results

are driven by neighbors unwilling to give, or Community type neighbors giving all of their

wealth. Moving onto the Uniform networks similar giving is observed for Altruistic, Community

and Miserly, types; but a very different pattern for the Matching types. Here, there is more

variance among these types; however, each showing distinct trends. For the Min-match types

the distribution still peak or 0 and 1, but between these values there is clear favoring toward

lower contribution levels, which gradually flatten out around 0.5. For the Max-match the peaks

are the same, however, the frequency of contribution between 0 and 1 are much more uniform.

These patterns seem to suggest that when degree is uniform across actors the levels of giving

are a result of “local” norms, which in this case are the minimum and maximum contribution

amount with each of these network clusters.

Finally, the preferential attachment networks exhibit a completely different contribution

pattern for the Matching types. Agents of this type, where wealthy agents have more connec-

tions, contributions are much higher for both types. In addition, note that this pattern is the

same whether or not the provision point is met. From the perspective of inducing public goods
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provisions, this is very illuminating. That is, all things being equal, preferential attachment

networks of this kind induce the highest level of giving from agents most likely to vary their

contribution amount. These descriptive statistics, however, do not give clear evidence to the

likelihood of meeting a provision point in any of these network types, or how agent types affect

these outcomes.

Following from this analysis, therefore, I specify a basic probit regression model to measure

the effect of these variables on the probability of meeting the provision point. In the data each

observation includes a dummy variable indicating whether it was drawn from an instance of

the model that met the provision point. This allows for the use of probit regression to measure

the effect of all model variables across all network types. In Table 1.4 are the results of these

models.

The most striking observation from this table is that all things being equal, i.e., holding

all independent variables constant at zero, preferential attachment networks have the highest

probability of successfully reaching the provision point, while power-law networks have the

lowest. On the surface this may appear to be a contradiction, as these network types have

roughly the same structural configuration (as explained in Table 1.2); however, where they

diverge is the mechanism by which that structure is generated. In the preferential attachment

networks wealthy agents have the most ties, and thus the highest amount of potential influence

on the outcome of the simulation. If these wealthy and highly connected agents contribute, the

likelihood of reaching the provision point greatly increase as a result of network effects. On

the other hand, in the power-law networks these highly central actors become so at random,

and thus their influence over the network is driven only by their type.

This observation can have significant impact when considered in the context of state building
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Parameters Network Types
Binomial Uniform Pareto Power-law Pref. Attach

(Intercept) 0.65∗∗∗ 0.92∗∗∗ 0.29∗∗∗ −0.72∗∗∗ 1.40∗∗∗

(0.07) (0.04) (0.03) (0.03) (0.04)
Contribution 0.12∗∗∗ 0.12∗∗∗ 0.17∗∗∗ 0.15∗∗∗ 0.17∗∗∗

(0.00) (0.02) (0.02) (0.02) (0.02)
Wealth

Neighbors −0.00∗∗

(0.00)
Threshold −0.03∗∗∗ −0.05∗∗∗ −0.01∗∗∗ 0.04∗∗∗ −0.06∗∗∗

(0.00) (0.00) (0.00) (0.00) (0.00)
Disposition† −0.04∗∗

(0.01)
Miserly†

Community† −0.03∗ −0.05∗∗

(0.01) (0.01)
Min-match† −0.03∗

(0.01)
Max-match† −0.04∗∗

(0.01)
AIC 103442.10 103017.48 103422.46 103370.67 98140.69
BIC 103811.11 103386.49 103791.47 103739.65 98509.70
logL −51681.05 −51468.74−51671.23 −51645.33 −49030.34
N = 75000 in all models

† indicates dummy variable, and agent type variables labeled in italics

Agent type Altruistic not defined because of singularities, and thus are excluded

Standard errors in parentheses
∗∗∗ indicates significance at p < 0.001, ∗∗ at p < 0.01, and ∗ at p < 0.05

Table 1.4: Probit regressions for provision point achievement in three network types

and public goods provision. If affluent members of a society can leverage their influence via

social networks to commit their neighbors to contribute to a public good then it is much more

likely that the provision point with be reached – regardless of that highly central actor’s type.

When that actor becomes central by a different mechanism, modeled here as randomness, the

positive outcome is much less likely. Another strong indication of the strength of network

structure on the outcome of these simulations are the minimal impacts agent type and number
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of neighbors have on outcomes across all network types. In the former case, only in uniform

networks does being a Min-match type make you slightly less likely to reach the provision

point, while in the Pareto networks being a Max-match have a similar effect. On the latter,

the number of neighbors has no significant effect in any of the models, providing evidence that

the mechanism by which networks form is much more important than number of ties alone.

After examining the distribution of contribution frequencies for all agents in the various

network types, and considering what network configuration had the highest probability of

successfully reaching the provision point; next, I consider how contributions vary as a function

of wealth and what factors of the model influence this contribution. In Figure 1.4 the data

are disaggregated by agent type and provision point – as before – however, in these plots the

x-axis represents agent wealth, and the y-axis their contribution. Also, only those agents with

a disposition to give are plotted in Figure 1.4, which provides a slightly more detailed view of

the variation in giving across the network and agent types than provided by the plots in Figure

1.3.

Beginning with the binomial network, note the very tight clustering of giving for all agent

types, regardless of wealth or provision point. Again, note that for both the Min- and Max-

match types their is very little variation in giving.14 It is also clear how much of the Max-match

giving behavior were driven by the Community members in those densely connected binomial

networks, as the distributions of giving are nearly identical. Moving on to the uniform networks,

we see a similar pattern, but with slightly less clustering – particularly with the matching agent

types. Here, while he general pattern is followed, there are many instances where there agents

are giving far more or less than would be expected in a binomial network setup. Again, this

14Recall, agents decision criterion is not a function of their wealth for any types, so the clustering is expected.
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variation comes from the uniformity of ties and the wealth and types present in the local

clusters formed by the uniform network types.

Finally, the variation in giving for the matching agents in the preferential attachment is

extremely clear in this figure. Regardless of wealth or provision point, matching agents are

densely scattered across all giving levels. That said, there do appear to be more outliers with

high wealth giving relatively little of Min-match type when the provision point is not met,

compared to when it is. This is notable, as it may indicate the strength of miserly wealthy

agents in preferential attachment networks of this kid; wherein, their unwillingness to give has

a network-wide affect causing the threshold to not be met. As before, however, it is useful to

take this analysis one step further and measure the impact of specific aspect of the model on

the level of contribution. From these plots it is clear that wealth had little effect, therefore, in

the final analysis a generalized linear model (GLM) is used to measure how model parameters

affected contribution levels across all network types.

To measure the change in a proportional dependent variable, as is the case for the level of

contribution is this model, a generalized linear model of the binomial family with a logit link is

used. Given the specifications of the dependent variable in this model, such a GLM provides a

quality parametric fit. As such, Table 1.5 provides the results of this GLM run for all network

types. The first items of note from the table are the coefficients on the intercepts for all of the

models. Note, as before, all things being equal contribution levels will be higher in preferential

attachment networks than any others. The statistical significance of these coefficients, however,

are is extremely low, and likewise the standard errors on these estimates are enormous. As

such, it is difficult to draw any conclusion from coefficients. Fortunately, the estimates on the

independent variables of the model do provide a greater degree of insight.
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Parameters Network Types
Binomial Uniform Pareto Power-law Pref. Attach

(Intercept) −48.54 −44.51 −41.18 −41.21 −31.01
(1865.51) (691.30) (280.50) (279.53) (120.71)

Wealth −0.23∗∗∗

(0.02)
Neighbors −0.00∗∗ 0.01∗∗∗ 0.11∗∗∗

(0.00) (0.00) (0.01)
Threshold 0.02∗∗

(0.00)
Provision† 0.10∗∗∗ 0.08∗∗ 0.09∗∗∗

(0.03) (0.03) (0.03)
Disposition†

Miserly† −3.66∗∗∗ −3.67∗∗∗ −3.67∗∗∗ −3.66∗∗∗ −3.67∗∗∗

(0.08) (0.08) (0.08) (0.08) (0.08)
Community† 1.16∗∗ 10.97∗∗∗

(3.82) (2.74)
Min-match† −4.41∗∗∗ −3.53∗∗∗ −0.60∗∗∗ −0.73∗∗∗

(0.11) (0.07) (0.03) (0.03)
Max-match† 4.89∗∗∗ 0.70∗∗∗ 0.88∗∗∗ 0.86∗∗∗

(0.14) (0.03) (0.03) (0.03)
AIC 11057.68 12293.94 29640.28 28778.61 30102.51
BIC 11426.69 12662.95 30009.29 29147.59 30471.52
logL −5488.84 −6106.97−14780.14 −14349.30 −15011.26
N = 75000 in all models

† indicates dummy variable, and agent type variables labeled in italics

GLM with binomial family and logit link used for proportion dependent variable

Agent type Altruistic not defined because of singularities, and thus are excluded

Standard errors in parentheses
∗∗∗ indicates significance at p < 0.001, ∗∗ at p < 0.01, and ∗ at p < 0.05

Table 1.5: Generalized least squares regression for contribution level in all network types

First, because the Miserly type has only a small range of possible contribution, the ta-

ble shows that no matter what the network configuration these types are always going have

negative affect on contribution. In fact, that effect is equal for all network types. Next, Com-

munity types are likely to give more in binomial and preferential attachment networks, with

a strong effect present in the latter. The effect of matching agents is also within expectation,

as Min-match have negatively signed coefficients and Max-match with positive. In the case of
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uniform networks, Max-match agents have a very strong effect. Finally, these result support

previous evidence that the preferential attachment mechanism is provides that best outcome

for contributions, and thus reaching the provision point. The positive effects are strongest in

this network type, and in this model even the number of neighbors on an agent has a positive

affect. This is likely due to the scarcity of ties outside of those to the main hub, which when

they are present work to reinforce positive network effects.

1.5 Conclusion

The following design and experimentation of a computational model for a network variant of

a provision point public goods game has revealed many interesting aspects of how networks

can influence outcomes. Most notably, the evidence suggests that preferential attachment

mechanisms for creating network structure have a positive outcome on the provision of public

goods, regardless of the decision criterion being used by players to contribute to the public

good. There are important consequences for this result from the perspective of state building

through public goods.

As is noted in the networks literature, a preferential attachment mechanism is often ob-

served in naturally forming social networks, where the cost or barrier to creating a tie is

negligible. In places where state formation and public goods provision have been difficult, such

as Afghanistan, the cost of creating these ties may be high. As a result, the types of networks

needed to help support the provision of public goods, such as those generated via a preferential

attachment mechanism, do not have a natural path to formation.

Path dependence based on terrain, conflict, and historical boundaries can all act as hinder-
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ances to the natural formation of these networks. As such, the networks are much more likely

to form as one of the less supportive structures discussed above; such as the uniform networks

– where tight clustering occurs locally – or the power-law – where hubs are defined be some

exogenous factor.

Perhaps more interestingly, however, is how the design of these preferential attachment

networks – relatively to the typical generation – affect outcomes. In this case, an agent’s

preference is based on wealth, rather than the number of ties. The strong positive results here

for preferential attachment networks may also provide evidence that the centrality of wealthy

individuals within an informal institutions also plays a central roll to the likelihood that formal

institutions will follow. Furthermore, because agent-types populate each network at random,

these experiments do not provide insight as to how the structural position of agent types, as a

function of wealth, contribute to the outcomes.

Additional experiments are needed to disambiguate how wealth, agent-type, and structural

position contribute to agent decision making; along with the types of networks these agents

exist in.

As a first step step toward state building, it may be necessary to break these barriers, or

lower the cost of creating ties more naturally. By doing so, networks may form in a way that

support the flow of positive information to actors, which can then result in a higher probability

of the public good being provided. One most be cautious, as negative outcomes from networks

can occur; however, the evidence from the research presented here does not indicate that such

negative effects are likely.
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(a) Binomial

(b) Uniform

(c) Pref. Attach

Figure 1.3: Agent Contribution level by type and provision point in three network types
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(a) Binomial

(b) Uniform

(c) Pref. Attach

Figure 1.4: Agent contribution level by wealth with provision point and type for all network
types
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Chapter 2

Modeling Network Structure

Using Graph Motifs

2.1 Modeling Networks

The study of networks is perhaps one of the most interdisciplinary fields of study in contempo-

rary scholarship. Many types of data can be represented as a network, therefore, the application

of network analysis and modeling have been applied across a wide breadth of disciplines. In

the social sciences, the units of analysis are most often human interactions, which by their very

nature are difficult to model. More specifically, network structures are extremely important to

the study of political science. In many sub-fields there are examples of data that can be repre-

sented as networks; including, trade, diplomatic and conflict relationships. The social structure

of various networked organization is also of interest to many researchers—particularly terrorist
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or criminal networks. In most cases, however, there are subtle structural dynamics present in

these data, making them difficult to model using traditional methods.

The research and development of random graph models that consistently characterize struc-

tural phenomenon observed empirically in social and complex networks dates back to the work

of Paul Erdõs and Alfrèd Rènyi in their seminal work on random graph models (Erdos and

Rènyi, 1959). More recently, a family of models developed from the work of several scholars

in the network science discipline have emerged as the preferred class for the study of complex

networks. This class of models; known as the exponential random graph models (ERGM),

or p∗, have become the preeminent method for the development and study of complex social

structures. These models are the product of several critical observations accumulated through

previous research in networks.

Prior to this work, the so-called “small-world” network model was introduced by Watts and

Strogatz (Watts and Strogatz, 1998), and was predicated on two important observations in so-

cial networks: short average path length between nodes, and a high level of localized clustering

among nodes. These structural phenomena were often observed in relatively small networks,

but as technology improved so did our ability to study large complex networks. Following the

Watts-Strogatz model was the work of Barabási and Albert (Albert and Barabasi, 2002), which

noted that structure within complex networks exhibited “preferential attachment,” meaning

a limited number of nodes drew in disproportionally more edges than the vast majority of

others, creating the now well-studied finding of “heavy-tailed” degree distributions in complex

networks (Barabasi and Albert, 1999; Albert and Barabasi, 2002; Clauset et al., 2009). The

ERGM class of models retains the structural consistency of these previously developed mod-

els; however, ERGM assume a fixed number of nodes, and structure among these nodes are
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modeled as random variables in a stochastic process (Robins et al., 2007).

In addition to these models, over the past several years there has been an explosion of highly

tailored network models developed to address specific structural features of networks. Many of

these models are more closely related to graph theoretic concepts, attempting to bridge the gap

between the classical concepts of Erõds and Renyi (Bollobás, 2001; Newman, 2003). Likewise,

an alternative class of contemporary models take an agent-level approach, evolving structural

growth as a decision process occurring endogenously through the nodes themselves (Leskovec

et al., 2005; Steglich et al., 2010). While the massive and growing literature on random graph

models has provided enormous insight into the general structural dynamics of networks, these

models are limited in both their underlying assumption about the means by which structure

is generated, and the types of networks they can model.

To be sure, given the volume of literature in this field the number of proposed network

models are nearly innumerable. For some, using a model specifically designed to approximate

the dynamics of interest may be adequate. The rigidity of these models, however, makes

them much less useful for modeling less well-understood network dynamics. Likewise, the

ERGM class of models can theoretically model any countable graph, which itself constitutes a

monumental and unifying result from this work. In practice, however, the Markov-Chain Monte

Carlo (MCMC) methods used to estimate ERGM models provide a much sparser landscape

of possible graphs. The problem of model degeneracy is well known in the ERGM literature,

and attempts have been made to address these problems (Handcock, 2003). Unfortunately,

the practical implications are quite limiting, with many models of interests degenerating into

complete or empty graphs.

The primary shortcoming of these models is their treatment of the atomistic component of
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a network—the node. In all of the models mentioned above, and in fact in the vast majority

of random graph models of social networks, actors are modeled as entering the system in a

vacuum—free of any pre-existing structure. In real networks, however, it is clear that this is

not the case. Except in the simplest of cases, whenever an actor enters a network system that

actor is bringing some degree of exogenous structure, which will have an immediate impact

on the growth trajectory of that network. This is particularly true of human social networks,

which exist in a rich, complex, and often hidden fabric of social ties.

Consider the network dynamics when two people meet each other for the first time. Upon

meeting, these individuals have changed the structure of their social networks by creating

an edge between them, but with that structure they have also brought with them their pre-

existing social structure. All of the people they already know; friends, family, co-workers,

competitors, etc. This meeting has not simply created a dyad existing in isolation, but rather

it has connected two large components, and increased the probability that the single bridge

created by this dyad will in turn become a cluster of shared relationships. Figure 2.1 visually

depicts the difference between these concepts.

(a) Dyadic model (b) Motif model

Figure 2.1: Competing models of social interaction

Clearly, however, there is considerable nuance and ambiguity with respect to how to model
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the relationships in the right panel of Figure 2.1; whereas, the dyadic relationship on the left

is simply a binary event. The dependencies related to these ties can be a function of network-

level metrics, e.g., diameters, centralization, or density; node- and edge-level attributes, e.g.,

centrality, type, or direction; or any combination therein. The plethora of potential modeling

parameters have lead to a literature full of rigorous, yet limited models for network growth.

Current random graph models of social networks are useful, but are limited by oversimplified

assumptions that ignore the inherent complexities of social structure. This research attempts to

close the gap between the theoretical assumptions of current models and the self-evident reality

of natural network interactions by providing a more flexible framework capable of modeling a

much larger set of networks.

The paper proceeds as follows: first, the graph motif model is introduced. Next, as this

method relies on a combination of various machine learning and computation techniques, a

detailed description of the algorithmic implementation is provided. This is followed by a brief

introduction to the gmm Python package for specifying graph motif models, with a simple

example. The final section describes a new network data set on co-authorship within the

Political Science discipline, collected specifically for this analysis. This data is then used

in a more thorough example of graph motif modeling with a discussion of the results. The

conclusion focuses on the advantages of this framework over current methods, its shortcomings,

and necessary future research.
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2.2 Graph Motif Model

To overcome the limitations of current random graph models of social networks the concept

of a graph motif model (GMM) is introduced. This new framework is predicated on two

key assumptions that distinguish it from other network modeling techniques. First, new actors

entering a network do not do so in a vacuum, i.e., actors bring exogenous structure to a network

when entering it and thus models of social networks should build new structure in an analogous

way. To model networks this way, however, it is necessary to form a priori beliefs about these

exogenous structures and the process by which they will enter the network. As such, the second

assumption is new network structure will resemble currently observable structure in type and

frequency.

Given this second assumption, current structure can then be used to form these necessary

beliefs. This, however, forces a strict requirement for GMM that is not shared by other random

graph models—specifically—the need for some base structure from which to form structural

beliefs about the network being modeled. It could be argued, however, that all random graph

models require base structure in that they all require some fixed number of nodes to model. A

set of nodes without structure still constitutes a base graph, despite its degenerate form. This

is particularly true of Barabasi-Albert model of preferential attachment, which always begins

with the same base structure.1

The observation that networks perpetuate self-similarity as they grow has been noted several

times in the empirical literature. In fact, complex networks exhibit significant fractal scaling

(Song et al., 2005; Kim et al., 2006; Kim and Jeong, 2006). This literature also shows that

fractal scaling persists in networks at both the micro- and macro-scales (Kim et al., 2007);

1In practice this is often modeled as a single dyad or a three-node line graph.
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therefore, it is natural to use this observation to form the critical bridge between the first and

second assumptions. To be clear, there are several assumptions that could be used to form

beliefs about network structure, such as node-level metrics, stochastic processes, etc.; however,

self-similarity is preferable in that it is minimal and not dependent on a graph’s type. For

example, if the model used a node-level metric as a foundational assumption the model would

also require that this metric described all networks, which may in fact be a contradiction for

some graphs, i.e., directed vs. undirected graphs, weighted vs. unweighted graphs, weakly

connected vs. strongly connected graphs, and so on. Furthermore, the burgeoning literature

on the effects of social networks on political outcomes and collective actions suggests a strong

relationship (McClurg, 2003; Scholz and Wang, 2006; Siegel, 2009). As such, it may be the case

that individuals are using social networks to overcome problems inherent in collective action,

and informational or efficiencies gains may be made through the repeating of certain network

structures in various contexts.

To begin, the GMM framework described here applies to undirected and directed graphs

with an arbitrary set of node or edge attributes. While this allows for an extremely rich set of

possible models, it precludes some graph forms; specifically, multigraphs and hypergraphs. This

restriction is done to limit the complexity of the model in this initial form. It may be possible

to incorporate multigraph models into the GMM framework; however, the abstract nature of

hypergraphs makes their applicability to social network models unclear. For example, consider

a hypergraph wherein a single edge is incident on many nodes. This is not a construction that

models social interactions naturally, and thus incorporating them into the model has limited

value.2 With these restrictions, the model proceeds as follows: given some graph G of arbitrary

2A “multigraph” is defined as a graph where any two nodes may have multiple edges between them. Con-
versely, a “hypergraph” is defined as graph where a single edge may be incident on any number of nodes.
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size and some integer τ > 1 count all of the subgraph isomorphisms in G of graphs i ∈ I, where

I is the set of all single-component graphs formed by τ nodes.3 These single component graphs

are the motifs on which the entire GMM framework rests. For example, suppose τ = 3, then

I = [{V = 2, E = 1}, {V = 3, E = 2}, {V = 3, E = 3}] where V is the number of nodes

and E the number of edges of graphs i ∈ I. In this example, therefore, {V = 3, E = 1} /∈ I,

as this graph contains two components: a dyad and an isolate. Also, note that these motifs

have a natural ordering given their number of nodes and edges, although as V and E increase

this ordering is not strict as motif can have equal numbers and nodes and edges and not be

isomorphic. This will become become critical to how new network structure enters the model.

Next, let f(in, G) be a function that describes the number of subgraph isomorphisms of in

contained in G, and S be an ordered n-tuple where S = {i1, i2, ..., in}, such that in is increasing

in number of nodes and edges. For two graphs to be isomorphic there must be a one-to-one

correspondence among the nodes and edges of two graphs. A subgraph isomorphism between

two graphs G and H, therefore, is defined as such a correspondence for graph G in an induced

subgraph of H. This construction is very useful, as it allows for the quantification of motif

frequency in any given base structure, i.e., the composition of a graph given some set of possible

“constituent parts.” While the subgraph isomorphism problem is known to be NP-complete,

certain cases can be solved in polynomial time and several algorithmic approximations have

been proposed (Ullmann, 1976).

Figure 2.2 is an illustrative example of how S can be ordered by complexity, and the counts

of subgraph isomorphism. The left panel shows some base structure consisting of four connected

components. The right panel depicts how the function f(in) generates counts over all motifs

3The restriction that τ be strictly greater than one accounts for the fact that a τ ≥ 1 would allow for a
singleton element, which would violate the first assumption of GMM for exogenous network structure.
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(a) Example base structure (b) Subgraph isomorphism histogram

Figure 2.2: Natural ordering of S with subgraph isomorphism counts for some base graph

in S. Note, however, that the frequencies represented in the example are purely illustrative,

and do not reflect actual subgraph isomorphism counts of motifs in the left panel. The tuple

S thus constitutes the observable variables of interest, ordered by structural complexity; i.e.,

the types of structure the second assumption predicts will likely be observed as the network

grows given some value of τ . This tuple can then be used to generate beliefs about the type of

structure entering the network as it grows in size and complexity. In order to generate these

beliefs some function over S must be defined. The function, however, can take several forms.

2.2.1 Generating Beliefs About Structure

As discussed in the introduction, a critical aspect of modeling network growth using motifs is

specifying what types of motifs enter the graph. Using subgraph isomorphism it is possible to

calculate the frequency of these motifs, but it is still necessary to explicitly specify how these

discrete counts are used to generate the probabilities. A straightforward way to do so is to
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simply define a discrete probability mass function over these counts.

Given S, therefore, define a probability mass function (PMF) such that
∑S
i Pr(X = i) = 1,

where i is element of the tuple S with discrete probability, and the sum of probabilities for all

elements in S is equal to one. As the number of elements in S is dependent on τ , it is not

necessary that the PMF relate exclusively to the elements of S. For the purposes of discussion

in this paper the PMF defined are both exclusive to this set as well as meaningful beyond it.

For example, recall the simple set of motifs described for τ = 3. In this case, a GMM would

not require a PMF that satisfied the above requirement for the complete graph mode of four

nodes because this motif would be excluded from S by definition.

As stated, this allows for a large set of possible PMF to be used to specify the probabil-

ity a given motif will enter the network. This function may rely explicitly on the subgraph

isomorphism counts, wherein zero probability mass is defined for any motif with no subgraph

isomorphism in the base structure. Alternatively, it is also possible to specify a PMF that

models the probability of motifs as a discrete probability distribution over all elements of S.

Below I will describe two examples of PMF; the first an explicit function over the elements

in S , and the second a function that provides positive probability mass for all elements of S

regardless of whether any were observed as subgraph isomorphisms in the base structure.

F (i) =
Si
S∑
n=1

Sn

(2.1)

Figure 2.3: Explicit PMF for motif probability

The probability that some subgraph in ∈ S will by the next structural component of graph

G may be given by F , the discrete probability distribution over S defined in Equation 2.1. This
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function states that the probability in will be the next structural component of G is given by

the proportion of subgraph isomorphisms found for in ∈ G given the total number of subgraph

isomorphisms counted ∀i ∈ S. F thus defines a discrete probability distribution over S, and

provides the necessary prior beliefs to generate new structure in G. Again, this function will

assign zero probability mass to any motifs that are not observed as subgraph isomorphisms

in the base structure. This can be problematic, as it presumes that certain motifs will never

enter a graph—clearly limiting the possible networks it can model. In other cases, however,

this limitation may be necessary and is the case when modeling the co-authorship described

below.

Given this limitation, it is also useful to have a PMF that assigns positive probability to

all motifs. Here, we may utilize the natural ordering of elements in S by their structural

complexity to fit a canonical discrete probability distribution. Specifically, in this case I define

an alternative PMF for the elements of S in terms of the Poisson distribution in Equation 2.2.

F (i;λ) =
λie−λ

i!
(2.2)

Figure 2.4: Poisson PMF for motif probability

In this construction the “mean” of the distribution, represented by the shape parameter

λ, is the mean of all motif counts in S. The natural ordering of motifs by complexity fit

the motivation of the Poisson distribution to model event counts, as we may consider the

occurrence of increasingly complex motifs within a given base structure as a diminishing rare

event. Likewise, the most likely motifs to enter graph may have probabilities centered around

the motif with mean complexity in the base structure. If these assumptions do not reflect the

data generating process present in the base structure, however, such a specification is misplaced
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and an alternative specification of the PMF should be used.

It is important to note that these, or any PMF defined over S has a direct effect on the

nature of the GMM specified. The function defined in Equation 2.1 requires the least amount

of assumptions about the probability of motifs in the model, relying explicitly on subgraph

isomorphism counts. This, however, is limiting and alternative methods may be desirable. As

such, it may be useful to define a PMF from the canon of discrete probability mass function

given that the assumption of those distribution are relevant to the GMM, as I have done using

the Poisson distribution in Equation 2.2. Next, once probabilities are defined over S methods

for adding these structures to the graphs must be defined.

2.2.2 Generating New Structure

With these beliefs generated, the next step in the model is to draw some motif from S using

the probability distribution and add it to the network structure by some growth rule. This

rule is denoted R(·) and is defined as a mapping R : in → G, which is restricted only by the

graph theoretic constructs assumed by G. That is, the decision rule must be applicable to

the fundamental constructs of G and subgraph elements of S, but is otherwise open to the

particularities of a model’s design. For clarity, the basic steps of the GMM framework are

listed in Figure 2.5, and in following section a simple growth rule is defined.

After each iteration of growth the process for forming structural beliefs is repeated, and the

probability distribution is recalculated. The continual updating of beliefs as the network grows

allows for a certain degree of path dependance in the model, as probability mass may converge

to the most likely motifs as the network grows. This may, or may not, be viewed as an advantage

of the model, but future version will allow for both static and dynamic probabilities over S.
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Now, this process continues until the model has satisfied some termination rule denoted as T (·),

which is restricted as R(·). The methods by which structure is added to the network and the

model is terminated are intentionally left open, as the GMM framework is meant to support

any number of possible growth models. Beyond the limited restrictions described above, it

is completely up to the discretion of the modeler. In the following section the algorithmic

implementation of this method is described in detail, and one simple implementation of a

GMM is specified. Before proceeding, however, a review of the core elements of the method

for modeling networks using graph motifs:

The framework for modeling network structure using graph motifs described above attempts

to overcome the limitations of current methods by supporting a much larger set of possible

network types, allowing for flexible specifications, and modeling network growth more naturally

by requiring exogenous structure to enter the network. To achieve this, two key assumption

are made: the presence of some base structure upon which to form beliefs about the type

of structures present in the graph being modeled; and that the constituent parts of this base

structure—modeled as graph motifs—act as a meaningful proxy for the data generating process

present in the network being modeled. These assumptions are in stark contrast to those of

many traditional network models.

The GMM framework brings with it a different set of limitations, many of which will be

discussed in the conclusion. As much of the model hinges on subgraph isomorphisms counts,

this model requires a sophisticated computational implementation. In the following section

an implementation is described using the Python programming language to develop the gmm

package for graph motif modeling.
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1. Begin with some base graph G of arbitrary complexity

2. Given some integer τ > 1, the set I contains all single-component subgraphs formed by
τ nodes

3. Define S as an ordered n-tuple containing all i ∈ I

4. Define the function f(in) to count the number of subgraph isomorphisms of in ∈ G, and
a PMF over all elements in S

5. Draw structure from this probability distribution and add that structure to the network
by some growth rule R(·)

6. Repeat steps 4-5 until the some termination rule T (·) is satisfied

Figure 2.5: The basic steps of the GMM framework

2.3 Algorithmic implementation: the gmm Python Package

Before any implementation of the GMM can proceed, it will be necessary to have a means

for representing complex networks computationally in the Python language.4 Fortunately,

the NetworkX package is a highly-developed Python package for the creation, manipulation,

and study of the structure, dynamics, and functions of complex networks (Hagberg et al.,

2008).5 NetworkX is capable of representing graphs of arbitrary complexity, including both

node and edge attribute data, making it ideally suited to be the computational foundation for

an algorithmic implementation of the GMM framework.

The gmm package consists of two object classes. The first is the “gmm” class itself, which

is the essential element of any model. Given the specification of the GMM framework out-

lined above, this class requires three elements: a NetworkX graph object as the model’s base

structure; and growth and termination rules, as Python functions. With these elements in

place, the “gmm” object’s primary function is to verify that all model parameters are valid to

4For more information on the Python language see http://www.python.org/
5The NetworkX package exploits existing code from high-quality legacy software in C, C++, Fortran, etc., is

open-source, and fully unit-tested. For more information on NetworkX see http://networkx.lanl.gov/
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a GMM model, store these parameters appropriately, and provide functionality for storing and

retrieving information about a given GMM simulation.

Python functions

def growth_rule(base, new):
...

gmm

T(•)

R(•)

base

def termination_rule(base):
...

nx.Graph()

algorithms

simulate

...

...

nx.Graph()

Figure 2.6: Implementation of gmm with dependencies

The second class is “algorithms,” which provide all of the functionality for properly run-

ning a simulation and generating network structure from a given “gmm” object. Within this

class are all of the functions needed to create a set of graph motifs, generate beliefs about how

that structure enters the model, and the actual generation of new network structure. With

respect to generating beliefs, the two PMF discussed in the previous section are included in

the current version of this class. The Poisson function requires SciPy—a third-party scien-

tific computing package—to generate the correct probabilities. NetworkX also requires this

package as a dependency, therefore, its use in the gmm package does not compound software

requirements.6

6For more information on SciPy see http://www.scipy.org/
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Finally, as stated previously, the subgraph isomorphism problem is known to be NP-

complete and therefore a sophisticated approximation is needed given the computational com-

plexity inherent in counting the number of subgraph isomorphisms for arbitrarily large G and

τ . Specifically, the VF2 algorithm—the most commonly used algorithm to evaluate subgraph

isomorphism—is used to perform the necessary calculation for matching subgraph isomorphism

(Junttila and Kaski, 2007; Cordella et al., 2001). With these two simple classes, it is possible to

specify a rich set of GMM. Figure 2.6 illustrates the basic computational framework described

here. Inheriting the representation of graphs from NetworkX, the “gmm” class requires three

parameters: a graph object and two properly specified Python functions. This object is then

passed to the “algorithms” class and a simulation is run, which results in a new graph object.

Following the example of high quality scientific Python packages, such as NetworkX and

SciPy, the gmm package is open-source and fully unit-tested. All of the code is free to inspect

and download at this website: https://github.com/drewconway/gmm, which includes all unit-

tests to verify all function’s execution. In the next section a very basic GMM model is specified

and simulated using this software, leading to a more complex specification used to model the

growth of collaboration within the SSRN Conflict Studies eJournal.

2.3.1 A Simple GMM with Random Growth

Given the requirements of the GMM, the first steps are to determine the base structure, and

the growth and termination rules to be used in the model. In this example I will use the well-

known Petersen graph as the base structure, and two very simple rules.7 The termination rule

will be a “node ceiling,” whereby the model will terminate growth once the network contains

7The Petersen graph, often denoted as K10, is a ten node graph with uniform degree of three. It is a
well-studied graph for its many known properties, such as being a non-planar.
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at least 250 nodes. For growth a random attachment rule will be used such that when a graph

motif enters the graph a random node from the motif will be connected to a random node from

the current base structure. These algorithms are implemented in pseudo-code below, and are

explicitly defined as Python function in the documentation for the gmm class in Appendix A.

Algorithm 1 Pseudo-code “node ceiling” termination rule

Require: G
if G >= 250 then
return true

else
return false

end if

Algorithm 2 Pseudo-code random growth rule

Require: G,H
G = G[H] {Compose H with G}
r1 = RAN(G); r2 = RAN(H) {Select random nodes from each graph}
G = EDGE(G, r1, r2) {Create edge}
return G

This example is—of course—not a model of any particular network growth mechanism, but

a useful example in that it shows the power of the GMM framework with such simple rules.

The Petersen graph is made of all closed motifs, i.e., there are no pendants or pendant chains

present in the graph. As such, the random growth rule will be connecting these structures by

single edges, which will create simple chains of whatever motifs are drawn from the probability

distributions. Figure 2.7 illustrates this, with the Petersen graph shown at the left, and the

resulting simulation on the right. The elongated structure in the simulation result show the

chains of motifs growing in different directions, as the random selection of nodes caused growth

to occur in along several paths.
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(a) Petersen graphs as base structure (b) Simulated GMM results

Figure 2.7: Result of simple GMM with random growth rule

Using this same framework it is possible to model much more complex networks. In the

following section I show how the GMM method can be used to model scholarly collaboration

within the SSRN Conflict Studies eJournal. This begins with a brief description of how the

data were collected, the data itself, and then a detailed description of the model and results.

2.4 Modeling collaboration in the SSRN Conflict Studies

eJournal

The Social Science Research Network is a digital library that indexes non-peer reviewed, self-

submitted, research within the social sciences. From their online mission statement, “Social

Science Research Network (SSRN) is devoted to the rapid worldwide dissemination of social
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science research and is composed of a number of specialized research networks in each of the

social sciences...Each of SSRN’s networks encourages the early distribution of research results

by publishing submitted abstracts and by soliciting abstracts of top quality research papers

around the world.”8 This is similar to other online digital libraries in the hard sciences,

such as arXiv.org, which indexes new research in Physics, Mathematics, Computer Science,

Quantitative Biology, Quantitative Finance and Statistics, among other disciplines.

The website has been operating for over 16 years, and contains over 290,000 documents

from over 148,000 authors, and has received over 40.9 million downloads at the time of writ-

ing. It is a rich repository of working papers and new research in a plethora of fields. The

library is divided by discipline, for which Political Science has its own section. Within each

discipline, there are several eJournals tailored to specific areas of study—either substantive

or methodological. For this study, I focused on the co-authorship network of the Conflict

Studies eJournal. From its own description the eJournal, “distributes working and accepted

paper abstracts on the theoretical or empirical study of conflict. This includes both the causes,

processes, and termination of conflict as well as approaches used to prevent and stop conflicts.”

The decision to focus on this single eJournal was made for several reasons. First, the entire

network is far too large in scale to be used. It was impractical for many practical reasons, such

as the amount of available storage and processing resources available. Given these limitations

it was necessary to focus on a smaller subset of the data. Perhaps more importantly, however,

this was a network I had some contextual knowledge of. My own sub-disciplinary studies

focus on conflict, and therefor it was logical to choose an eJournal where I had domain some

knowledge about the authors and their papers. As with any modeling endeavor, it is very

8For more information on the Social Science Research Network see http://www.ssrn.com/update/general/

ssrn_faq.html
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useful to have some base understanding of the system being studied in order to interpret the

results. This is especially useful when specifying the GMM; as having contextual knowledge

about the data generating process can help design the growth and termination rules, but also

when looking deeper in the data to understand its structural characteristics and dynamics.

Before any analysis can begin, however, it is necessary to generate a network from the

document pages on the SSRN website. Figure 2.8 shows an example of a typical document

page within the Political Science section of the SSRN. As you can see, there is a tremendous

amount of contextual information beyond the simple author-article relations that can be added

to the network. First, the co-authorship network is a natural bipartite network, a specific class

of graphs. In a bipartite graph there are two types of nodes, which cannot form edges to

nodes of the same type. In the case of a co-authorship network the node-types are authors and

articles, and authors can only make connections to articles; making this a directed bipartite

graph.

Beyond type, each article page contains additional information specific to each node. For

authors, there are internal SSRN statistics, such as a download-based ranking; as well as

institutional information. For articles there is the title, abstract, keywords and similar internal

SSRN statistics. Each of these article pages also contains the date when the paper was posted to

SSRN, making this a temporal network where edges have chronological information. This edge

data will be particularly important as the GMM is constructed. To generate the network data

I developed a series of R and Python scripts to scrape all of this data from SSRN and construct

a data-rich network. For this study only the Conflict Studies eJournal was scraped, but the

scripts were intentionally designed to be capable of building networks from any SSRN eJournal.

To download and view the code see: https://github.com/drewconway/gmm/tree/master/
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examples/ssrn. Figure 2.9 is a stylized illustration of how the network was constructed using

the page from Figure 2.8 as an example.

Nodes Edges Mean Degree Density Weakly Connected Components
5,515 4,457 1.616 1.5e−4 1,493

Table 2.1: Descriptive statistics of entire SSRN network

By extracting this data for all 2,416 articles in the Conflict Studies eJournal at the of

writing, the resulting network is a large and complex representation of academic collaboration

within this sub-discipline. Table 2.1 provides some basic descriptive statistics for the network.

The most striking revelation from this data is the sparsity of the network. The vast majority

of connectivity occurs in small weakly connected components made up of dyads or star graphs

of various sizes. This indicates that most authors in this journal submit a single paper and

do not continue to submit new, collaborative, works. That said, the largest weakly connected

component is sizable, with 1,190 nodes. This scale indicates a core group of scholars that

are actively collaborating within the Conflict Studies eJournal. This main component of the

network is explored in more detail in Appendix B, but the general finding is that this core is

made up primarily of legal scholars—rather than political scientists. As such, this data may

not be the most useful for understanding collaboration dynamics within Political Science as a

discipline, but is still very valuable as a means to build and test a GMM.

2.4.1 Modeling the Growth of the Conflict Studies eJournal

As stated, one of the primary motivations for using graph motifs to model networks is to

allow for exogenous structure to enter the model, rather than only allowing for endogenous

edge formation. In terms of modeling co-authorship this is precisely the dynamic by which
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Figure 2.8: Example article page on SSRN

structure is generated, as new articles enter the a journal or library the minimal structure

allowed is dyad, i.e., a single author article. Another advantage of using this technique to

model networks is it provides a method for modeling the growth of a network over time based

on some current structure. That is, given some state of a network we may specify growth

and termination rules that attempt to model how that network will evolve overtime using the

current state as the base structure of a GMM.

In the case of the Conflict Studies eJournal co-authorship network, because each edge

contains date information it is possible to construct a time-series of the network as new articles

are posted to the eJournal. One question we might ask is: can we specify a GMM to model

to growth in the Conflict Studies eJournal from 2008 to 2009? Figures 2.10 and 2.11 below

illustrate how the network evolves from year to year, and there are several notable changes in

the network’s structure over this time period.
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Title
Abstract

Keywords
Paper Statistics

Institution
Author Statistics

'Law as a Seamless Web?'

Bommarito

Date: 14-07-2010

Katz
Date: 14-07-2010

Zelner

Date: 14-07-2010

Figure 2.9: Stylized illustration of SSRN network data collected

First, the network becomes considerably larger. In 2008 it contains only 403 nodes with

375 edges, while in 2009 that increases to 1,446 nodes with 1,596 edges. More importantly,

however, we see the emergence of a large weakly connected component at the network’s center

with 208 nodes, making up approximately 14% of the total structure. In addition to the

large component, Figure 2.11 reveals smaller but meaningful components where collaboration

is clearly occurring. Finally, a critical characteristic of this network is its bipartite structure,

as any deviation from this would violate a principle feature of a co-authorship network. When

specifying the growth and termination rules for this network these are key features of the

network growth dynamic that the GMM should capture.
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To begin, the simplest way to model the increase in scale of the network from one year

to the next is to use a “node ceiling” termination rule, as was done before. In this case, the

termination rule will halt the simulation once the base structure has grown to have at least

1,446 nodes. One concern with this rule is that while it will accurately model the evolution in

terms of number of nodes, it may not capture the edge growth. The use of motifs, however,

will overcome this as new edges will form as they have before, and here this means structure

characteristics present in the 2008 network will carry over into the simulated 2009 network.

That is, by allowing for exogenous structure to enter the network as it is growing the increase

in edges will be commensurate with structure of the base graph, and thus the expectation is

the resulting simulation will have a similar edge counts.

Next, a growth rule must be constructed that models the features described above. As

stated, the largest connected component of the 2009 SSRN network contains about 14% of the

total nodes in the network. To capture this dynamic on every iteration of the model the motif

entering the network will have a 14% probability of fusing two weakly connected components

together, while also maintaining the bipartite structure of the network. This is meant to model

the building of the network through collaboration, wherein a new article can enter the network

and create connectivity between two previous disparate components. Likewise, in order to

maintain the large number of disconnected components still present in the network in 2009, if

the 14% probability test fails the motif will simply enter the graph and make no connections

to current structure.

To be clear, this growth rule does not explicitly specify the generation of a large central

component. Furthermore, it is not calculating any metric or attribute by which a preferential

attachment dynamic would induce hub structure. Instead, using a simple network-level statistic
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calculated from the base structure, the rule is pulling disparate components of the network

together at random. This parsimony is design gives the model more power, and there is less

concern that the results of the model are caused by over-specification of the GMM.
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Figure 2.10: SSRN Conflict Studies eJournal co-authorship network, circa 2008
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Figure 2.11: SSRN Conflict Studies eJournal co-authorship network, circa 2009

Finally, because the model must explicitly maintain the bipartite structure required of a co-

authorship network the explicit probability mass function from Equation 1 is used to generate
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probabilities over the set of motifs. In this case, there are some motifs in the set that can never

occur in a co-authorship network, such as a triangle or square, and therefore these motifs must

have zero probability mass placed on them in order to maintain the bipartite structure of the

final network. The result of this algorithm should be a bipartite network with an emergent cen-

tral component, but also one with many disconnected articles. Both the termination and growth

rules were implemented in Python as described here, and this code is available online (https:

//github.com/drewconway/GMM/blob/master/examples/ssrn/ssrn_evolution.py). Next,

I discuss the results of this simulation and provide a brief statistical comparison of the actual

and simulated 2009 co-authorship networks.

2.4.2 Results of Simulations

The GMM was specified with τ = 5, a relatively large value that allowed for a fairly comprehen-

sive set of motifs to be used in the model. The results of the simulation are illustrated in Figure

2.12. Immediately, it is clear the model was able to capture the emergence of the large weakly

connected component and the persistence of many small disconnected components. What is

less clear, however, is how similar the structural feature of the simulated network—particularly

the large component—are to the actual 2009 co-authorship network. Unfortunately, there are

limited methods for directly measuring the similarity of graphs. By way of matrix correlation

or quadratic approximation procedure it is possible to compare structural similarity between

networks with exactly the same numbers of nodes, where the nodes themselves have a similar

identity or role in the network. In this case, however, the simulation does not guarantee that

the simulation will have exactly the same number of nodes; as is in the case here. Furthermore,

these simulations are abstractions from the base structure, so nodes are not given an identity
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in the simulated graph that corresponds to a node in the real network.

Descriptive statistics
Actual Network Simulated Network

Nodes 1,446 1,448
Edges 1,158 1,160
Weakly Connected Components 338 305
Mean In-degree 2.207 1.602
Goodness-of-fit test of degree distributions
χ2 115.323
Degree of freedom 88
p-value 0.0267

Table 2.2: Comparative statistics between the actual and simulated 2009 networks

As such, the first basis for comparison are simple descriptive statistics. The upper-panel

of Table 2.2 shows this comparison between the two networks. For these basic structural

characteristics the simulated network appears to have done quite well at capturing the growth

dynamics in the SSRN network. The number of nodes and edges are nearly identical, and while

the former is to be expected the latter provides evidence to the strength of modeling networks

with motifs. There are slightly more connected components in the actual network, but not by

a notable margin. The divergence in mean-degree, however, is somewhat troubling. Clearly

the simple growth rule used in this example does not fully capture the cohesiveness nature of

the SSRN network, as the simulation is considerably sparser than the actual network. One

possible way to capture this would be to require that the growth rule minimize the diameter of

the emergent large component as it was being built. Short diameters are very common in real

social networks, and by enforcing such structure the component would grow with more local

clustering, e.g., a “small-world” effect.

An alternative metric for comparing the networks is to test the goodness-of-fit between

their degree distributions. The actual network has a maximum degree of 30, but the simulated
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network only has a maximum of 15. In order to perform a χ2 goodness-of-fit test the degree

distribution for the simulated network is padded with 15 extra zero entries in order to match

the length of the actual degree distribution. Performing the calculation results in the values

on the lower-panel of Table 2.2. Here we can see that the distributions are a poor fit; but given

the p-value, at relatively high confidence levels we cannot reject the null hypothesis that the

simulated degree distribution was created by the same process as the actual network’s.

These results are very encouraging. Using a very simple algorithm to model the key growth

features in the SSRN Conflict Studies eJournal from 2008 to 2009 the GMM was able to

simulate a network from the 2008 data that has a very similar structure to that of the actual

2009 co-authorship. Clearly, however, there are many aspects of the actual evolutionary process

that are not being captured by this specific model. The advantage to this framework is that a

more refined GMM could be easily created, but that itself is not without possible danger.
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Figure 2.12: Simulated GMM of 2009 co-authorship network with τ = 5
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2.5 Conclusions

In this paper I have introduced an alternative technique for modeling networks called the

“graph motif model.” This method differs greatly from current models in its core assumptions,

and how those assumptions are implemented. The first assumption is that GMM requires

exogenous network growth. That is, when new actors enter the network they do so with some

degree of preexisting structure; therefore, this structure should be present in the model. Second,

future structure in a network will resemble current structure. This assumption relies on the

observation that networks exhibit considerable fractal scaling as they increase in complexity.

Using these assumptions, the GMM is constructed as computational framework for simulating

network growth using some base structure, and subgraph isomorphism counts of a set of graph

motifs to measure the frequency of various network structures within a network.

The basic GMM framework has been implemented as the gmm package in the Python pro-

gramming language. Relying on high-quality scientific computing packages already available

in Python, this package allows for the specification of a near boundless set of GMM to model

any number of networks. To test this modeling framework a new data set is introduced: the

co-authorship network of the SSRN Conflict Studies eJournal. Dividing this network into a

time-series, a GMM is designed to model the growth of collaboration in this network from 2008

to 2009. The results of this simulation were very promising, as the simple GMM proposed was

able to capture many key features of the network’s evolution over this time period.

This work has many potential contributions to Political Science, and social science more

generally. As stated, much of the data studied in the social sciences is relational. More

specifically, this data often represents relationship among people. While there have been great

advances in techniques for modeling these relationships, much of the current work relies on a
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set of models founded on very limiting assumptions. The dynamics of human interaction are

both complex and subtle, and by attempting to fit this into a overly simple models results in

a massive reduction in the types of networks that can be modeled. By using a more flexible

framework, such as the GMM proposed here, social science researchers may be able to specify

models that capture these elusive dynamics, and explore deeper how the ramifications of these

dynamics affect social outcomes.

The technique proposed here, however, has many of its own limitations. Perhaps most

pressing is it is poorly suited to model non-human networks. There are many networks for

which exogenous growth is a contradiction; such as physical networks like transportation or

telecommunication. Also, many biological networks are also poorly modeled with exogenous

network growth, such as protein-interaction or neural networks.

Furthermore, what is meant by “human networks” are those in which actors interact with

little to no cost associated with that interaction. We might think of these as the standard types

of social networks, either existing as face-to-face relationships, or those existing in online social

networks – such as Facebook or Twitter. There are many human interactions for which tie

formation may be difficult or costly. Consider – for example – terrorist or criminal networks

that are always working to hide their affiliations. It is much less likely that these types of

networks would form through graph motifs. That said, the primary motivation for this work is

to contribute to the modeling of a subset of networks relevant in the social sciences; therefore,

while this is certainly a limitation of the GMM framework it does not discount its value.

In its current form the growth and termination rules are exogenous primitives, which remain

static for a model. Conceptually, this is useful because it simplifies the construction of a model

and provides a basis for interpretation of the results. In some case, however, it may be useful
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to endogenize these rules given the initial state of the base structure. Consider the case where

the base structure is unknown to the modeler at the outset. Here, we may want rules that

emerge as the result of this structure given the context of our modeling task, in which case

endogenous rules generation will be necessary. Furthermore, the notion of “learning rules,”

is a potential extension; whereby, rules dynamically alter given the evolution of the network

through the iterations of the model. These adaptations, however, make model interpretation

more difficult—as is the case in techniques such as neural networks—and consideration therein

must be made before proceeding.

Beyond these theoretical limitations, there are also some technical. A linchpin of the model

is the need to count subgraph isomorphism in order to form beliefs about future network

structure. As stated, this problem is known to be NP-complete, which means the method

scales very poorly as either τ or the complexity of the base structure increase. As such, in

practice both of these model parameters must be relatively small in order for the method to

compute results in a reasonable amount of time. Improving the speed of the VF-2 algorithm

is a Computer Science problem, and one that I am not qualified to address. With current

technology, however, there are methods for improving runtime as the networks scale. First,

rather than recomputing the probability distribution at every iteration this could remain static,

meaning that subgraph isomorphism would only need to calculated once. Additionally, these

counts could easily be done in parallel in a high-performance computing environment. Future

version of the gmm package will allow for such distributed computing.

Additional improvements need to be made to future versions of the software. Better ac-

counting for simulation statistics need to be made, including runtime, growth metrics, proba-

bility mass convergence and iterative changes to the base network. For example, given the path
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dependence of the model, it would be very useful to have some knowledge of the distribution

of motifs used in a given simulation in order to compare and interpret results from multiple

runs of the same model. This will allow for more precise comparison among various GMM

specifications.

Finally, utilizing the ERGM literature, considerations for the quality of “model fit” within

the context of the GMM must be made. A large advantage of ERGM models is the ability

to compare model fitness. Likewise, a conspicuous omission from this research is a direct

comparison between the GMM specified for the co-authorship network above and a comparable

ERGM. In order to more fully understand how these two modeling techniques differ direct

comparisons must be made across a large class of networks. This type of research, therefore,

will constitute a large portion of the future effort in the work.

In this paper a co-authorship network within a Political Science sub-discipline was used to

illustrate how a graph motif model could be used to model the growth of a network over time.

Clearly, however, the potential for this method goes well beyond simple models of scholarly

collaboration. In my own work, studying the dynamics of covert and illicit social networks

is confounded by a lack of data (Sandler and Enders, 2004). With the above method it is

possible to theorize network models with a limited amount of information and study how these

theoretical models change. In populations where more direct sampling can be done; such as

sexual contact (Hamilton et al., 2008) or drug-user networks (Weeks et al., 2002), and the

task may be to uncover hidden populations this method may allow for the testing of a broader

set of theoretical growth dynamics (Gile and Handcock, 2010). Finally, within the context

of economic models of networks a cooperative game theoretic approach has often been used

(Jackson, 2008). With GMM, however, it may be possible to incorporate non-cooperative
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decision criterion, and thus opening the possibility of studying an entirely different class of

network games.

Using graph motifs to model networks represents an alternative method with a broad poten-

tial for application. By utilizing computational methods to specify these models the technique

has inherent flexibility, which is useful when attempting to model the naturally complex nature

of human social interactions.
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Chapter 3

Methods for Collecting

Large-scale Non-expert Text

Coding

Much of the data used in empirical political science is not directly measured. This is because

there are rarely any straightforward – or standard – ways to directly measure many of the

phenomena of interest in the discipline. As such, these phenomena must be quantified in

indirect ways. One of the most common methods for this is through the encoding of information

gleaned from text.

Examples abound from all sub-fields in political science: casualty statistics from a battle

description, categorization of a news stories, or the policy content of a politician’s statements.

In all of these cases, it is nearly always the case that the task of encoding the text is given
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to one, or a limited number of expert coders; or more recently, machine automated methods

of encoding are used. Given that so much of the data within political science are generated

via an intermediated encoding mechanism, it follows that there may be ample opportunity for

innovation with respect to the methods used to encode text.

In this paper I explore the viability of using a large number of non-expert human coders

as an alternative method for coding text. To do this Amazon’s Mechanical Turk platform

is used to crowd-source the coding from an on-demand labor pool of non-experts. Crowd-

sourcing platforms have been used to generate data across many academic disciplines, and

with these experiments I hope to highlight its applicability and value to political science. The

paper proceeds as follows: first; by way of example, I provide a review of current methods

for coding text with the discipline. This includes a discussion of several shortcomings of these

methods observed in the literature. Next, an introduction to crowd-sourcing is given, with

specific emphasis on Mechanical Turk. Examples of previous work done on that platform are

provided. The remainder of the paper describes the design and implementation of a series of

experiments conducted to assess the viability of using MT for coding political text, and how

variations in the mechanism used on that platform affects results. This includes a discussion

of the experimental design, technical implementation, results, and conclusions.

3.1 Coding political text

There are various types of qualitative data that may be subject to quantitative encoding by

political scientists. For example, one may want to rate a photo on an emotional scale, or encode

a social network by observing individuals’ interactions. These endeavors require careful and
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unique coding methods, but are not the focus of this research. Here, I am interested in coding

text. The vast majority of data, both historic and current, are recorded as text. In addition,

the confluence of technologies on the Internet; such as e-mail, social media, with modern

distributed storage and data processing tools has increased the scale of text data available to

social scientists for analysis exponentially.

Access to text data is not a problem, but rather the increased scale of its availability poses

a challenge to researchers with limited resources to analyze it. Researchers must match their

coding method to the dataset of interest, while at the same time optimizing this decision based

on costs, time, and methodological preference. At present, the methods employed by political

scientists to perform text encoding can roughly be divided into two modes: human encoding,

or automated machine encoding.

3.1.1 Human Coding

Human encoding is, for all intents and purposes, the classic mode of political text coding within

the discipline. The most common data generation process in this mode involves employing one

or more “experts”, typically in the form of research assistants – graduate or undergraduates

students. This pool of labor is then provided with some codebook, or rubric, for how the text

are to be encoded. They are then provided with the text documents and begin the task. In

most cases this process happens once, and the resulting data are included in the sample.

As this is the classic method of text encoding, there are countless examples from the lit-

eratures. Well known examples include the Policy Agendas Project 1, the Comparative Par-

1http://www.policyagendas.org/
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liamentary Democracy Data Archive 2, and the Militarized Interstate Dispute data 3. In all

of these projects a detailed codebook and schema are used to attempt to ensure consistency

among coders.

Perhaps the most long-standing, and widely cited, data set based on this method in political

science is the Comparative Manifestos Project (CMP). At the time of writing, this dataset

includes 3,611 party manifestos, from 905 parties, across 55 countries. The manifestos are

encoded using a detailed handbook, and coders must be trained and tested before their data

are accepted into the project. Briefly, the coding method for CMP proceeds as follows: humans

“unitize” each manifesto by breaking the text into quasi-sentences. Human coders then assign

one of seven policy domains and one of fifty-six policy categories to each unit. Percentage

totals of categories are used to estimate the policy scores for each manifesto. This process is

is done for each document once, and the summation of these codings becomes the CMP.

The contribution of the CMP cannot be understated, as it is one of the most valuable

resources in existence to the comparative politics sub-discipline. In fact, the experiments

that follow use raw manifesto data pulled directly from the CMP. It is, however, not without

problems. Given its prominence in the discipline, there has been a significant amount of

research done to examine the validity and reliability of the baseline data itself, and the resulting

encodings. This research has uncovered non-systematic errors in encoding (Klingemann et al.,

2006; Benoit et al., 2007 2009), misclassification of text (Mikhaylov et al., 2012), and the

inclusion of non-manifesto documents into the corpus of data (Gemenis, 2012). All of these

findings raise serious concerns given that so much research is empirically based on the CMP.

It is also important to note that because the CMP has such a high-profile in the discipline

2http://www.erdda.se/index.php/projects/cpd
3http://www.correlatesofwar.org/
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it attracts the most scrutiny. These issues of bias, error, and misclassification are part of many

– if not all – research based on human encoded text documents. Human are (quite) fallible.

In fact, large-scale hand-coding projects of this kind are now much less common due to the

salience of coding issues raised by those examining the CMP and other large-scale human

coding projects.

In recent years, more technically sophisticated methods of text coding have been developed

that attempt to address some of the issues arising from hand coding. These algorithmic meth-

ods are designed to overcome the issue of reliability, non-systematic bias, and data volume that

dog human coding methods.

3.1.2 Automated Machine Coding

As the previously cited research has shown, humans are unreliable coders of text documents

that require a moderate degree of interpretation. Part of the reason for this is that human

coded data are typically produced by experts, and by definition experts are biased. Having

long historical context, or strongly held opinions – features considered desirable for experts –

may bias them to interpret an otherwise innocuous sentence as having some policy relevance

that a different expert, or non-expert, would either ignore or interpret differently.

Furthermore, as the volume of text being coded by experts increases these errors become

compounded. Increasing volume presents additional problems for coding capacity. Even in a

world where human coders did not inject bias and non-systematic errors, it is simply impossible

to expect human coders to handle the task when the amount of text data needing coding is

measured in terabytes.

In an attempt to address issues of reliability, and increase the capacity of text possible
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to encode, researchers have turned to automated, algorithmic, machine coding methods. The

contrast is quite clear, both from a resource constraint and reliability perspective. Rather

than having to limit the amount of text coded based on budget constraints for hiring research

assistants or time limitations, machine coding is constrained only be the vastly cheaper resource

of computing power. Likewise, because algorithmic coding methods vary in implementation

between deterministic and probabilistic, the coding does not suffer any non-systematic bias or

errors.

Examples of automated machine coding include using text mining techniques to extract

policy position (Laver and Benoit, 2003), differentiation between political party’s policy posi-

tions (Kidd, 2008), categorical assignment of text documents (Hopkins and King, 2010), and

time-series of international conflict (King and Lowe, 2003) and party position (Slapin and

Proksch, 2008). The results of this research highlight the value of these methods when coding

reliability is paramount. Unlike human coders, properly implemented machine coding meth-

ods will always code identical pieces of text the same way. Also, since the volume of coding a

machine is capable of handling is constrained only by bandwidth and processing power, these

methods scale much more reasonably with the pace text is being generated.

Among the best known, and most widely cited, examples of high-volume automated machine

text coding is the Penn State Events Data Project (PSED), formerly the Kansas Events Data

System (Gerner et al., 1994). PSED uses a dictionary-based method to identify and extract

entities from a stream of new articles. These dictionaries contain a very large number of proper

nouns and phrases that allow the system to match these dictionary items in text and code them

as event data. Because this method relies so heavily on the dictionary itself, additional research

has been done attempting to sharpen and formalize methods for defining the dictionary’s
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content (Schrodt and Gerner, 2012, Chap. 2).

The reliability gained by using algorithmic methods, however, is often counterbalanced by

losses in validity. While most of the machine coding methods used have been shown to code

text at least as “good” as human coders, the fact is to reach these comparable levels a great

deal of effort must be exerted to fine-tune the algorithm. In the case of PSED, the project

explicitly states that researchers are encouraged to generate their own dictionaries when using

the software for their own research4.

Taken to an extreme, this fine-tuning can lead to over-fitting, which in turn can cause errors

of false-positive or -negative coding. In a less extreme case this practice of fine-tuning can limit

the generalization of these methods, making them less appealing to researchers whom either

lack the requisite volume of text to code, or the acumen in algorithm design.

Most recently researchers have sought to combine algorithmic, or statistical, methods with

human coders as a step-wise approach to generating data (Simon and Xenos, 2004; Grimmer,

2011; Ahlquist and Breunig, 2012). The benefits of combining methods is clear: the algorithmic

approach provides a reliable and unbiased method for minimizing the set of possible codes or

categories a given piece of text could belong to. Then, human coders can be used to verify

or recode all or some of the text that a machine has processed. This approach provides the

benefits of fully-automated coding, but also optimizes for human time when humans need to

be in the loop.

A popular coding method that operates at this intersection is the generation of topics from

text using Latent Dirichlet Allocation (LDA)(Blei et al., 2003). Recently, several researchers

have been experimenting with LDA for political text coding (Monroe et al., 2008; Quinn et al.,

4http://eventdata.psu.edu/data.html
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2010; Grimmer, 2010). Briefly, the method, also known as topic modeling, probabilistically

generates a set of discrete topics from a text corpus. This is useful for coding political text

because these topics can be used as categories, or the words in each topic can be used in

a dictionary. Unfortunately, due to the probabilistic nature of the method, topics can vary

significantly from each run of the model. This has lead to several new lines of research that

attempt to adapt the basic LDA model to perform more reliably (Ramage et al., 2009; Titov

and McDonald, 2008; Hospedales et al., 2011).

All of these methods: purely human coded, fully-automated machine coded, or a statistical

or hybrid method, present advantages and disadvantages to researchers needing qualitative text

data coded into quantitative units. In the following sections I describe an alternative method

for coding political text data by crowd-sourcing non-experts using Amazon’s Mechanical Turk

(MT) platform (http://www.mturk.com). Before proceeding to a discussion of the design and

implementation of the experiments, I first introduce the technology of crowd-sourcing.

3.2 Crowd-sourcing

The notion of the “wisdom of crowds” has deeply penetrated the popular consciousness. With

the success of Wikipedia, and the popularity of mainstream books by Surowiecki, Gladwell,

and Shirky on the subject, the idea that high-quality output can be generated by the effort

of many people is well known. Here the term “crowd-sourcing” refer to the idea of collective

intelligence, or that through a natural populist mechanism the best, or most accurate, results

or answer emerge from a large pool of labor.

While this type of crowd-sourcing is well known, this context is too general to describe
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how it is used to code data here. Crowd-sourcing platforms, like MT, are not designed to

collectively produce some tome, or generate an eveolving document that is constantly iterated

over. Instead, MT is designed for individuals to request work on finite – and often very small

– tasks that require human intelligence to complete. The final feature, that human intelligence

in required, is very important.

Computers are quite good at performing small (or large) finite tasks, such as arithmetic,

recalling a record, or manipulating data. Despite our best efforts, computers still perform

much worse than humans on tasks that require interpretation, context, or human vision. One

classic example is determining whether a picture is of a cat or a dog. Most toddlers would have

no problem telling you if a picture contained a dog or a car, or both, or many. Computers,

however, are not very good at this.

This is exactly this type of task MT was designed to crowd-source: small tasks that humans

excel over computers at, and can be easily distributed at large scale. In fact, the primary unit

in MT is called a HIT, or “human intelligence task”. Crowd-sourcing in this context is thus

the collection of completed human intelligence tasks, which themselves are specific and finite.

For this paper I work with this narrower definition of crowd-sourcing.

Though there are clearly limitations to the types of tasks that can be done on MT; for

example, dissertation writing – the bounds are quite large. Tasks posted to MT range from

purely commercial endeavors, to academic research, and many things in-between. Common

short-form tasks include classifying web sites, performing web searches, or writing brief reviews

or summaries; and common long-form tasks include, audio and video transcription, writing

essays (500 words or less), submitting original graphic designs.

Many of these examples have clear commercial applications. For example, one may want to
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classify websites in order to build a filter to remove adult content or offensive content. Likewise,

one could generate a massive amount of feedback on a product very quickly by asking MT

workers to write short reviews. There has also been an increasing amount of academic work

conducted on MT already. Given that the platform as a tool is more familiar to disciplines

technical disciplines, such as computer science and information systems, a large amount of

research done on MT comes from these fields. Very often researchers who study fields such

as machine learning, computer vision, or natural language processing will use MT to build

datasets that can be used to inform their models of human intelligence (Sorokin and Forsyth,

2008; Snow et al., 2008; Callison-Burch, 2009; Kittur et al., 2008).

This work by researchers in other disciplines has led to many general findings on MT that

are valuable across all disciplines. First, due to the open nature of the MT labor pool, it is

critically important that researchers design tasks such that they can not be easily abused or

SPAM’ed5 by workers (Ipeirotis et al., 2010). Second, the labor pool participating in MT tasks

is much more representative of the general population than the typical convenience sample used

in academic experiments (Ross et al., 2010). Finally, workers are highly responsive to variation

in task length and compensations, i.e., short/high-value tasks are much more desirable than

long/low-value tasks (Buhrmester et al., 2011).

Recently, social scientists have turned to MT as an alternative means for running experi-

ments. These experiments have ranged from specific empirical implementations of theoretical

work (Rand, 2012; Sprouse, 2011), to general assessments of the viability of MT for running

social and behavioral experiments (Mason and Suri, 2012; Paolacci et al., 2010). Very recently

work was done to show that many classic examples of experimental work from political science

5SPAM often refers to unsolicited email, but can also refer to any unwanted or unsolicited response or
submission.
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could be replicated using MT (Berinsky et al., 2012).

3.2.1 Mechanical Turk

The MT platform itself is setup as a simple web-based interface, and is part of Amazon’s larger

set of web-services. One can interact with the service via one of two modes: as a requester, or a

worker. Workers browser a list of HITs available to participate in. These HITs can be ordered

by several dimensions, including reward amount, creation date, or time alloted to complete.

Some HITs may be unavailable to workers because they do not meet the qualification

requirements. Requesters specify these requirements when posting HITs, and they can range

from age minimums (used often for jobs that may contain adult material), location restrictions,

or the completion of a qualification test. The concept of a qualification test requirement is

central to the experiments described in later sections, and I will return to this later in greater

detail.

While browsing the list of available HITS a worker can preview a HIT. Once inside the

preview, a worker can then accept HIT to work on it, or not and return back to the list of

available HITs. Once work has been submitted it must then be approved by the requester

before the worker is compensated. Figure 3.1 is an example of what the HIT interface looks

like for workers. As you can see, information on the requester, the compensation level, time

allotted, number of HITs available, etc., can all be seen from this interface. Figure 3.1 also

show that the top three jobs in this case were unavailable to the author because I did not meet

the qualification requirements.

For the purposes of these experiments I interact only as a requester; however, it proved

quite practical and informative to operate as a worker at the outset of this research in order
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Figure 3.1: Example of HIT Interface for MT Workers

to become more familiar with the system, and standard rapacities within it. Requesters have

two primary modes of interacting with the platform: through MT’s web-based HIT creation

tools, or directly through the application programming interface (API) 6.

The web-based tools provide a useful set of templates and standard formats for creating

HITs. Anyone who has every worked with a web-based tool for creating content will have

familiarity with this interface. As you can see in Figure 3.2, HIT templates are based on the

type of data one may want to collect. Whether it is categorization, image moderation, or a

survey, MT provides requesters with a set of templates based on common MT use cases.

Once a task has been created using the web interface, and the HIT has been posted,

requesters can manage and track their HITs via additional web-based interfaces. Here a re-

questers can extend a HIT to get more responses, or disable a HIT if something goes wrong

or it is not longer needed. This is also the interface through which requesters can evaluate,

and approve, responses. Once a response has been approved, requesters can then download

6It should also be noted that Amazon provides both a “production” and “sandbox” version of these interfaces.
The sandbox version is used for building and testing HITs before exposing them to real MT workers, and having
to compensate them for approved work.
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Figure 3.2: Example of HIT Creation Interface for MT Requesters

the results to collect the data.

The web-based requester interface is useful for those new to MT, or when a project is

relatively small and will not require any iteration. To develop and deploy the experiments

described in the following sections I did not use the web-based interface. The experiment

described here are of a much larger-scale, which the web-based creation tools are not well

suited to support. Instead, custom software was written to interface directly with the MT

API.

To create and manage HITs via the API, a requester must be familiar with MT’s XML

specification for communicating with the API, and have a preferred means of interacting with

the API7. There are many ways for requesters to interact with the API, and I provide a detailed

accounting of the method used for these experiments in Section 3.4.

7Documentation on MT API can be found online here http://awsdocs.s3.amazonaws.com/MechTurk/

latest/amt-API.pdf
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In the following section I describe a series of experiments to test the viability of MT for

collecting political text coding, and how variations in the mechanism affect the quality of

output. Informed by the results of much of the previous research cited here, these experiments

have been designed to maximize the quality of responses and incentive workers to complete a

large amount of coding in a relatively short amount of time. This begins with a description of

the text data set used in these experiments, and how its baseline expert coding was collected.

This is followed by a discussion of the technical work-flow used to implement the experiments,

including hardware and software components. Finally, a detailed discussion of the experimental

design is provided.

3.3 Political Text Coding Experiments

This work exists as part of a larger research project on how different coder types, and coding

treatments affect the quality of political text coding (Benoit et al., 2012). The purpose of these

experiments is to test whether the collective coding output of political texts from a pool of

non-experts compares to the coding of experts. With expert coding our a priori assumption is

that by virtue of being “experts” the quality of their codings will meet some minimum level. As

has been mentioned several times before there are problems with expert codings, however, as

a discipline we still believe that a single expert coder is capable of producing valuable output.

With non-expert, however, coders our initial belief is exactly the opposite. Our expectation

is that the output of an individual non-expert will be inferior to that of an expert. By the same

logic that we believe experts produce quality codings, we therefore believe that non-experts

produce lower quality. By definition, experts understand what they are reading and are trained
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to recognize words or phrase that match some coding schema. Non-experts do not.

Within the context of crowd-sourcing, however, we are not limited to a single non-expert.

In fact, our access to the labor pool is limited only by our economic resources, and at the scale

of only a few pennies a task this limit is quite high. The the notion of “collective coding,”

therefore, is pivotal to the hypothesis. That is, if many non-experts code the same piece of

text, will the consensus – or modal – coding be as good as a single expert? Moreover, if these

individual non-expert codings are then aggregated to the document level, is the modal coding

of the whole document also on par with expert coding?

From a resource perspective, the benefits of using crowd-sourced non-experts to perform

tasks such as coding are quite clear. Again, given the expected compensation levels in the MT

market, a massive amount of work can be completed for very little resources. Also, the time

to completion is only a fraction of the usual expected time frame for large-scale coding tasks.

In this case, over 48,000 individual text units were coded over the span of a few weeks, for less

than $1,500 USD.

Theses benefits, however, have little practical value if the collective output of non-experts

does not compare to that of experts. As such, the primary focus of these experiments is to

examine how this trade-off between experts and non-experts can be mitigated by careful design

of the collection mechanism used for non-experts.

As has been mentioned previously, MT provides requesters the ability to filter workers

through the incorporation of qualification requirements. Requesters are highly motivated to

design coding task such that only the best coders are permitted to submit work. This is akin to

research faculty hand-picking graduate students to work as research assistants on a traditional

coding project. For these experiments, variations in the qualification test are used to measure
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how altering the collection mechanism can affect the quality non-experts’ collective coding.

To design these experiments several key components must be addressed. First, a corpus of

text data must be specified, and that text must be sampled in a way that can be coded by both

experts and non-experts. Next, a general purpose coding schema must be developed such that

it can be used to collect codings from both experts and non-experts. Finally, a well-designed

mechanism must be developed to collect codings from non-experts.

3.3.1 Manifesto Text Data

The text data used in these experiments is drawn from party manifestos. The texts are sen-

tences from the British Conservative, Labour and Liberal Democrat manifestos issued in 1987

and 1997 (Benoit et al., 2012). These data are chosen for two reasons. First, these text are

readily available as part of the CMP; and second, as function of this inclusion these text have

already been widely studied (Laver and Hunt, 1992; Laver, 1998). One notable observation is

the significant shift to the center by the Labor party over the time period. The presence of

this shift provides an additional check on the viability of crowd-codings.

To begin, these manifestos must be distilled into single units of text such that they can be

coded by both experts and non-experts alike. Experts are capable, and quite comfortable, with

coding large pieces of text. As has been discussed, this is the primary mechanism by which

the CMP is coded. To explore how coding works on MT, however, the unit must fit into the

“small and finite” framework MT is designed to support and MT workers are accustomed to

working in.

As mentioned, the CMP unitizes manifesto text into “quasi-sentences,” which are deter-

mined by the coders themselves and are meant to represent a unit of text that naturally
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expresses some policy position. These sentences can consist of whole sentences, parts of sen-

tences, or arbitrary concatenations of sentences and phrases. While these units are concise

enough to work within the MT framework, there are problems with this method for our pur-

poses. Besides the awkward breaks, this method of unitization is endogenous to the coding

process, which for our purposes may insert bias into the coding before coding has even begun.

The units of text drawn from the manifestos for these experiments are natural sentences

units 8. Along with avoiding the endogeneity presented by quasi-sentences, using natural

sentences allows for machine automated text dissection of the manifestos into single units. A

simple script was developed to generate the single text units for these experiments. Using this

method the total set of sentences available for coding is 5,444; again, drawn from six manifestos,

across three parties, a decade apart.

Before coding can begin, a sequence and schema must be specified that can be used for

both expert and non-expert coders. It is crucial that these work for both types of coders in

order to ensure that the resulting codings are comparable.

3.3.2 Coding Sequence and Schema

The sequence by which coders read text and perform coding has significant impact on how text

are coded. When a coder is reading an entire manifesto from start to finish something read

at the outset can influence codings later in the document. Also, if coders are asked to code

only single text units taken completely out of context important information may be lost. For

this reason, the sequence of sentence units delivered to coders in these experiments attempts

8A “sentence unit” here does not necessarily mean a grammatically concise sentence. Because party mani-
festos often include bulleted lists, or long enumeration of policy positions, a sentence unit here can be divided
by various punctuation.
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to compromise these issues.

Sentence units are coded out of sequence from how they appear in the manifestos. Coders

are asked to read a chunk of text draw randomly from the corpus of sentence units. This

chunk contains the sentence unit being coded, and two preceding and proceeding sentence

units appearing in sequence from the manifestos. In practice, the sentence unit being coded is

highlighted in red, and the context sentence units are in black.

ALTERNATIVES TO PRISON. Every effort should be made to ensure that fine de-
faulters, elderly shoplifters and drunks are not sent to prison. Police cautions and
intermediate treatment should be more widely used. Where punishment is appropri-
ate, it should normally be community service rather than prison.

Figure 3.3: Example coding unit.

Providing the context is critical to informing the coder as to the possible policy statements

being made by a given sentence unit, but does not appreciably increase the effort required to

complete the task. The latter point is of utmost importance on MT, where workers guard their

time actively. Figure 3.3 is a replication of how a coding unit would appear to a coder9. The

sentence being coded is highlighted in red, and the instructions explicitly tell coders to code

only the red sentence, using the surrounding sentence units only for context. A copy of the

coding instructions given to non-experts is provided in Appendix E.

With the delivery mechanism for sentence units specified, the next step is to develop a

coding schema. For these experiments a simple coding schema is used. Unlike the CMP, which

uses a 56-category policy handbook, this design uses only three categories. This significant

simplification is used for two reasons. First, the much larger specification used by the CMP

9The formatting is slightly different here compared to how it appears inside MT due to printing requirements.
See Figure 21 in Appendix D for a screen shots the actual HIT interface.
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has been shown to be a major source of discrepancy when multiple coders have been asked to

code the same manifestos (Mikhaylov et al., 2012). It follows that non-experts would suffer at

least as much as experts in this case; therefore, a simpler specification is preferable. Likewise,

for these experiments my primary interest is the design of the coding method – and how that

affects results – not the coding itself. It is important that the method be applicable to any

type of coding task, not only policy positions.

The second reason extends from the requirement that both the experts and non-experts use

the same coding schema. It is quite impractical to attempt to provide coding instructions to

non-experts on MT for a 10-category schema, let alone 56. Again, MT is well-suited for simple

and finite tasks that require human intelligence. In order to develop a schema that would work

on MT, and also allow for a reasonable level of instruction for non-experts, three high-level

policy categories were specified: social, economic, or neither.

Coders are also asked to code each sentence unit on a policy scale. The policy scale is

area dependent. The economic policy ranges on a five-point scale from very liberal to very

conservative. Likewise, the social policy ranges on separate five-point scale from very left to

very right. Making this distinction allows the coding instruction to be more explicit about what

is an economic policy, and how to find one, vice a social policy, or something that contained

no statements regarding either of those policy areas.

Figure 3.4 is a visual representation of this coding schema. The first level of the hierarchy is

the policy area, which have corresponding numeric values denoted below. The next level down

the hierarchy are the policy scales, which also have a corresponding numeric values. These

numeric values are what are used to quantify the codings, and represent the primary data

generated. Given this schema, each sentence coding produces a numeric pair that corresponds

93



www.manaraa.com

Coding unit

Economic policy

2

Neither

1

Social policy

3

Very left

-2

Somewhat left

-1

Neither;nor

0

Somewhat right

1

Very right

2

Very liberal

-2

Somewhat liberal

-1

Neither;nor

0

Somewhat conservative

1

Very conservative

2

Figure 3.4: Visual Representation of Simplified Coding Schema

to the policy area and scale respectively. For example, a sentence that is coded as denoting a

“somewhat conservative economic policy” will have a corresponding code pair of (2, 1) in the

dataset: “Economic” → “Somewhat conservative”.

With the coding schema specified, the first step is to use it to collect expert codings. In

the following section I describe how these expert codings were collected and aggregated.

3.3.3 Baseline Expert Coding

In order to accurately test the viability of crowd-sourcing for political text coding there must

be a baseline measure of the “correct” coding for each sentence unit. Once this coding has

been determined, it is possible to measure how well the non-expert coders performed. For

these experiments this baseline coding was achieved by having multiple experts code the entire

corpus. In this case, those experts are three faculty members and three advanced graduate

students in political science. All of this coding was done as part of the larger research agenda

on political text coding (Benoit et al., 2012), and I am relying on the data generated by that

work as a baseline for my experiments.

As has been mentioned many times, using only a single coder has been shown create errors

in codings. Also, multiple coders often do not agree, or reach consensus on the coding for a
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given unit of text. These issues create problems for our experiments, as we need a single coding

for each unit to compare with the crowd-codings. To resolve this the notion of a “gold” coding

is introduced10. A sentence unit is said to be “gold” when a simple majority of expert coders

have consensus on the policy area.

This is a very inclusive definition, and is used to maximize the number of sentence units

that are available for coding by non-experts. Of the 5,444 total sentence units 4,403 qualified

as “gold” sentences by this definition. The expert coders reached consensus on 1,650 economic

policy sentences, 507 social policy sentences, and 2,246 that conveyed neither policy area.

In Table 1 counts of the sentence units’ expert coding are listed by political party and the

manifesto year. As you can see from the table, there is a relatively even distribution of sentences

among parties, with a slight bias toward sentences from the 1997 manifestos. Manifestos from

this year were all longer, so this bias is expected.

Economic Social Neither Total
Conservative 794 224 752 1,770
Labour 409 108 709 1,226
Liberal Democrats 447 175 785 1,407
1987 885 206 746 1,837
1997 765 301 1,500 2,566

Table 3.1: Counts of “gold” sentence units by party and year

You will note that the policy scale is not used as part of the definition. This decision

was made for two reasons. First, to include this in the definition a determination as to the

appropriate level of aggregation for each five-point scale would have to be made. That is,

would it be most appropriate to leave it as a five-point scale, or define consensus as a majority

left/neither/right or liberal/neither/conservative? While this is certainly possible, it is not

10The “gold” terminology is borrowed from the crowd-sourcing literature, and is not necessarily meant to
denote quality, only conformity.
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clear how doing so increases our understanding of the ability of non-expert coders to recognize

policy statements in text. Second, as a practical matter, further refining the definition of

“gold” significantly reduces the number of sentences available for coding by non-experts. Of

the 507 social policy “gold” sentences, only 81 would qualify as gold by requiring the three-

point aggregation of policy scale as part of the definition. Interestingly, this provides further

evidence as the the inability of experts to reach consensus.

For these reasons, the initial focus for the crowd-sourcing experiments is on non-experts’

ability to correctly identify the policy area of a sentence drawn from these subset of “gold”

sentences. In the following section a detailed description of the experimental design on the

crowd-sourcing experiments in provided. This includes a discussion of their technical imple-

mentation.

3.3.4 Experimental Design and Implementation

With a large-scale online experiment of this kind, the design has two distinct aspects. First, the

experimental manipulations must be specified and designed. Second, because these experiments

require broad integration of various technical platforms, great care must also be taken with

the technical design and implementation of the experiments. I begin with the design of the

experiments itself, and its manipulations.

First, it is important to consider how the labor pool on a platform like MT differs from

participants in a typical university data collection task. In most cases, the data collection

effort would be driven by the researcher themselves. That is to say, the researcher conducting

the data collection has total control over how the subjects, and how they interact with the

collection effort. On MT those dynamics are reversed.
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Crowd-sourcing platforms are driven by the labor pool, since without them there would be

no platform at all. This reversal presents interesting challenges for researchers attempting to

use it as a means of data collection. First, MT workers have a very clear economic incentive to

optimize their decision for accepting HITs based on their perceived difficulty; or time consump-

tion, and how that related to their advertised compensation level. The more high-value HITs

an MT worker can complete in the shortest amount of time the more money that worker will

make. This has significant impact on how the tasks should be designed, how many sentences

they are asked to read and code, and how much they are compensated.

Given these economic incentives, workers may also be motivated to “game” a HIT if such

a strategy would result in the successful completion of a HIT in a shorter amount of time.

Recall, workers are only compensated once a HIT has been approved by a requester. Workers,

therefore, receive a constant feedback loop from the requesters as to what they want, or at

least workers can interpret it this way. This impulse-response dynamic has implications for

the data used here because of the significantly larger number of “gold” sentences coded as not

having a policy area. These “Neiter-nor” sentences outnumber economic and social sentences

nearly 2-to-1, therefore, it would be entirely possible that workers would rightly infer this from

working through multiple HITs and begin to mis-classify based on this bias.

Also, because MT is a distributed web-based platform, the requester has no control over,

how, when, or where workers are interacting with the task. All of the text in our corpus

is English-language, however, most of the workers on MT do not come from native English

speaking counties (Ross et al., 2010). Since workers comes from many different parts of the

world, time zone difference can affect who is working on a task when. With respect to delivery

of the HITs themselves, because operating systems, browsers, and Internet connections can
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vary significantly from worker-to-worker it is important that the actual formatting of each

HIT be designed in the most standard possible way. This is not an issue when using MT’s

templates, but is in this case because the experiments used highly customized interfaces.

The experimental design laid out here attempts to address all of these issues. First, to find

the optimal balance of sentence units-to-compensation several small trial HITs were deployed.

These HITs, which contained various version of the full experimental design, were very valuable

in helping guide the final HIT structure. Because they were used as initial tests, and did

not include the full experimental design, data generated through them is not included in the

results of this study11. Based on information gathered through this process the final HIT

design includes six sentence units per HIT, with a total compensation of $0.18 per HIT. This

breaks down to a $0.03 reward per-sentence, amazingly meager level of compensation when

considered relative to traditional human coding projects. This number of sentences and level of

compensation struck a balance between the workers’ participation calculus observed in the trial

experiments, and my desire to get the coding completed in a reasonable amount of time. Given

the dynamics described above, and observations in the literature, increasing the compensation

would likely have only decreased the time to completion rather than increased the overall

quality.

To prevent the workers from coding sentences based on learning the bias toward “Neither”

sentences present in the whole corpus, a uniform distribution of sentence types are used for

these experiments. The “gold” sentences coded as “Social” by the experts is the smallest

subset, containing only 506 sentences. To make the distribution uniform, a random sample

11There may be some concern for priming, or contamination of the experiment since workers participating
in these initial HITs could also participate in the real experiments. Upon investigation, there were no workers
that participated in both. This likely the result of simple good fortune, therefore, in the future it would be
preferable to explicitly exclude these workers from participating in both phases of work. This is entirely possible
within the MT framework.
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of 506 sentences are drawn from the “Economic” and “Neither” subsets. The resulting set

of 1,518 sentences becomes the corpus for the crowd-sourcing experiments. For each HIT, a

random sample of six sentences are drawn from this corpus, and therefore in expectation each

worker will be asked to code a uniform number of “gold” sentence units12

Also, to prevent a very small group of coders, or even a single of coder, from doing all of

the coding, the number of HITs an individual MT worker can submit is limited to 50. The

maximum number of sentence units an MT worker can code, therefore, is 300. Workers, of

course, are free to code far fewer, and as is shown in the next section this is often the case. For

each of the experiments, 30 HITs are issued resulting in a total of 1,500 submissions, or 9,000

sentence units coded per experiment.

With the basic experimental design set, the next step is implementation. To implement

these experiments several tools from Amazon’s Web Services (AWS) toolkit are used. AWS

hosts a very large number of cloud-storage and cloud-computing services, along with secondary

service like MT. First, the corpus of sentences are hosted on Amazon’s Simple Storage Service

(S3), which provides simple and scalable storage for the data. In order to make the interface

for the HITs as customizable as possible I opted-out of using MT’s HIT templates, choosing

instead to host the HIT remotely. In this case, custom Javascript was written and hosted on

S3 to dynamically render a new HIT ever time a worker requested one.

When a worker requests a HIT, the Javascript hosted on S3 is executed and a new set

of sentences are dynamically pulled into the HIT. Workers then do the coding and submit

their work, which is stored on the MT platform. Additional Python software was written to

12This does not, however, guarantee that each sentence unit is coded the same number of times. The reason
for this is the result of a technical limitation of the system. In the future it would be preferable to design a
system wherein this uniform distribution is guaranteed.
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interact directly with the MT API13. This software was used to generate HITs, qualification

tests (discussed below), and approve and download coding results.

Figure 3.5: Diagram of Technology Work-flow for MT Experiments

Because I am interested in testing how well non-experts code political text based only on

the design of these experiments, all submitted work is approved. As such, the software written

to approve and download the work was hosted on AWS’s cloud computing platform called

Elastic Cloud Compute (EC2). Scripts would run many times a day to approve any new work

submitted, and download the results. Providing the workers with this immediate feedback also

improved participation, as MT workers are more likely to participate in jobs they can see are

being actively monitored by requesters.

13I relied heavily on the open-source boto package for interacting with the MT API (https://github.com/
boto/boto).
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To promote uniformity of formatting and style, an industry standard style-sheet library

was used for the design of all the HIT web pages14. This reduces issues of divergence in how

workers interact with the interface across platforms, browsers, or Internet service providers.

All of the software developed and used to support this research is available freely to inspect

and download at https://github.com/drewconway/mturk_coder_quality.

Figure 3.5 illustrates the basic technical work-flow of generating, posting, and approving

work for these experiments. This constitutes the basic setup of the experiment. What is

missing, however, are design manipulations. In this setup, any worker is able to accept a HIT

and code data. As has been noted, it is well known that quality control is an important feature

to a well-designed MT task. In the following section I described the use of qualification tests

to filter workers, and how these tests were manipulated as part of the experiment.

3.3.5 Qualification Tests

As mentioned, MT provides many different types of qualification requirements that requesters

can use filter workers. Requesters can also design their own qualifications tests, which workers

must take and pass before they are allowed to accept HIT requiring the test. As part of these

experiments I wanted to investigate how variations in qualification requirements affected the

ability of non-expert coders to match the coding of experts. That is, does a stricter qualification

test increase the quality of coding output?

In this case, to create a qualification test that will filter for coding ability the test exactly

replicates the coding task. Here the qualification test contains six sentences, uniformly drawn

from the three policy area types. The qualification test contains exactly the same coding

14http://twitter.github.com/bootstrap/
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instructions, and asks workers to code them. The difference being workers are instructed that

the correct codings are known, and passing the test requires coding them correctly 15. Figure

22 in Appendix D provides a screen shot of one question from a deployed qualification test.

I deployed two different qualification test, each of which represents its own experiment.

Each contains six questions, but the first – “Low-Threshold” test required workers to correctly

code 4-out-of-6 sentences correctly. The second test – “High-Threshold” – required workers to

correctly code 5-out-of-6 sentences correctly. An individual worker could pass one, both, or

neither test, and be eligible to code HITs associated with each test accordingly. The corpus of

sentences drawn from for all experiment is the same, however, the sentences in each qualification

test are exclusively different.

With the qualification test manipulations specified, there are a total of three experiments

deployed to MT: no qualification, low-threshold, and high-threshold. In the following section I

describe the results of these experiments.

3.4 Results

We begin by investigating MT coders ability to agree with the expert coders. A pair of coded

sentences are said to “agree” when the consensus codings from MT for a given sentence unit

matches the “gold” coding from the experts. A consensus requires a simple majority of coders

with a minimum of three codings per sentence unit. From the data, the minimum number of

codings for any sentence unit is 12, while the median is 31. As such, the minimum number

of coders is always reached, however, consensus is not. For all experiments, non-expert coders

15To pass the test, workers must only match the “gold” coding, which applied to policy area. They are still
asked to code for policy scale, but this is not used to adjudicate their responses.
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reach a consensus 89% of the time. In order to contrast these results with the experts the

remaining 167 sentence units were dropped.

Results Kappa Statistic

Experiment Sentences # MT Coders % Agree k∗ Std. Error z

No Qual. 1,315 89 0.65 0.47 0.13 22.6

Low-Threshold 1,393 56 0.70 0.54 0.12 26.7

High-Threshold 1,250 23 0.62 0.41 0.13 18.3

∗ A k value between 0.4-0.6 is considered “moderate” agreement

Table 3.2: Inter-rater Reliability Statistics Between Experts and MT Consensus Codings for
all Experiments

Table 2 reports the inter-rater reliability statistics when comparing expert codings with

the consensus MT codings, by experiment. The table also reports some descriptive statistics

about each experiment; specifically, the total number of sentences with consensus codings, the

number of coders that participating in each experiment, and the aggregate percent agreement

between the expert and MT codings. The inter-rater reliability statistic reported here is the

Cohen’s kappa statistics (Cohen, 1960). This measure is particularly useful in this case because

Cohen’s kappa adjusts for the probability that the two raters – in this case the experts and

the non-experts – agreed by chance. This is a concern if it is the case the coders; particularly

in the no qualification experiment, were randomly coding without reading in order to quickly

accrue compensation.

Here we get our first look at the level of participation in each experiment, and the overall

performance of the crowd-coders. Starting with participation, it appears that the presence

of a qualification test does reduce the number of workers participating in a task. Likewise,

by making the test more stringent – in this case going from a Low- to High-Threshold test –

participation is further reduced. More interesting, however, is how the presence of these tests
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seem to affect agreement.

Overall, the coders performed moderately well in all of the experiments. First, it is clear

that non-experts are able to identify the policy contents of text and code accordingly. Given

the distribution of “gold” sentence types used in all the experiments, if the non-experts were

randomly coding the sentences we would expect an overall percent agreement of approximately

0.34. We see, however, the coders are doing much better than that, with percent agreement

over 0.60 in all three experiments.

Figure 3.6: Coder Percent Agreement Distribution, by Experiment

In these experiments non-experts, however, fall well short of matching the expert codings.

Examining the kappa scores provides a bit more insight here. For all experiments the non-

experts match the expert coders “moderately” well. Given the amount of data, all of these

estimates are statistically significant, so p-values are not reported. What is more interesting

are the standard errors. Given the magnitude of the kappa estimates these standard errors are

relatively high. This would indicate that there may be some systematic bias in the non-expert
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coding.

Perhaps most surprising is that there appears to be no significant affect in quality by

increasing the qualification test threshold. Workers in the low-threshold test perform the best,

but workers in the high-threshold test perform worse than those where no test is present. In

Figure 3.6 the distribution of percent agreement for all non-expert coders is illustrated using

box plots. Here the unit of analysis is the percent agreement of each coder in every experiment.

We see that while the mean percent agreement in the high-threshold is actually slightly lower

than that of the no qualification experiment, the distribution is skewed more heavily toward

higher percent agreement.

This is reassuring, as it provides some evidence that the qualification test had a positive

affect, relative to the lack of a test, on filtering for higher-quality coders. It is still the case,

however, that coders in the low-threshold experiment performed better overall. Given this

result, the evidence collected from these experiments suggests that the simple presence of a

qualification, low-threshold or otherwise, provides as much of a filter as an increasingly difficult

test.

Though he results are very encouraging as to the performance of non-experts, there appears

to be some bias among the coders that is negatively affecting performance. In the following

section I further examine the results to attempt to uncover how the source of this bias.

3.4.1 Non-expert Bias

A simple way to check for bias in the non-expert codings to tabulate the counts of consensus

policy area codings across all experiments. We know that there is a uniform distribution of

these sentence types in each experiment, so if the non-experts were coding with some bias that
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should manifest in these counts.

No Qual. Low-Threshold High-Threshold
Economic 454 524 489

Social 734 774 710
Neither 127 95 51

Table 3.3: MT Consensus Policy Area Coding, by Experiment

Table 3 shows the counts of consensus policy area codings for all experiments. Here we

can observe significant biases being exhibited by MT coders. It appears that MT coders are

heavily biased against coding a sentence as having no policy area. Likewise, the non-expert

coders seem to over-code sentences as having to do with social policy.

The bias away from the “no policy” category is very strong; and interestingly, gets stronger

as the qualification test gets harder. This latter point is important, because the qualification

tests contains two sentences of each type. In the low-threshold test it is possible for a coder

to miscode two sentences and still pass, while in the high-threshold this is reduced to one.

This means to pass the low-threshold test a coder could qualify by missing both sentences not

containing a policy statement, but to pass the high-threshold test a coder would have had to

correctly code at least one no policy sentence. The evidence here, however, suggests that this

recognition does not carry over into the actual coding task.

To investigate this bias further, in Table 4 contains the percent agreement between MT

consensus sentence units by expert codings and experiment. Here the bias is extremely ap-

parent. This data shows that non-experts are – in fact – quite good at identifying policy

statements in text; with percent agreement over 0.75 for economic sentences and over 0.90 for

social sentences. It is recognizing when a sentence makes no policy statement that they fail.

This highlights a very interesting feature that may be present in the MT labor pool: coders
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Experiment Expert Coding MT % Agreement
Economic 0.77

No Qual. Social 0.92
Neither 0.22
Economic 0.87

Low-Threshold Social 0.98
Neither 0.20
Economic 0.77

High-Threshold Social 0.91
Neither 0.09

Table 3.4: Agreement Between Experts and MT Coders for Each Sentence Type, by Experiment

want to code. By that I mean, after reading instructions about policy statements, and seeing

examples, MT coders are hyper-aware of policy statements. They look for them, perhaps,

even when they are not there. Also, as a function of the labor environment of MT, successful

workers are “successful” because they are good at identifying patterns or components in a task

and labeling as such.

It very well may be the case the MT coders find it difficult to understand why a requesters

would even include a “null” category. The work they are accustomed to doing involves quick

and repeated categorization, and the subtlety of recognizing when a unit has no category may

be beyond the scope of what MT is well-suited to support. To follow this thread further, in the

next section I report the results of an additional set of experiments that attempts to separate

out this phenomenon.

3.4.2 Separating Social and Economic Sentences

To further explore MT coder’s bias against coding text as not making a policy statement two

additional experiments were run. The corpus of sentences used in the first three experiments

was divided such that one contained only “gold” coded economic and neither sentence units,
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and the other with only social and neither sentence units. With updated instruction, and the

incorporation of the low-threshold qualification test, coders in these experiments have a binary

choice: code the sentences of having a specific kind of policy, or not16.

Results Kappa Statistic

Experiment Sentences # MT Coders % Agree k∗ Std. Error z

Econ-only 942 15 0.62 0.23 0.10 4.28

Soc-only 955 32 0.60 0.17 0.09 0.95
∗ A k value between 0.4-0.6 is considered “moderate” agreement

Table 3.5: Inter-rater Reliability Statistics for “Economic-” and “Social-only” Experiments

Experiment Expert Coding MT % Agreement
Economic 0.92

Economic-Only Not Econ 0.28
Social 0.97

Social-only Not Social 0.19

Table 3.6: Agreement Between Experts and MT Coders for Each Sentence Type for “Economic-
” and “Social-only” Experiments

Interestingly, the results reported in Tables 5 and 6 reinforce the observation made in the

previous section the MT coders find it very difficult to code for null. In both experiments we see

the non-experts performing extremely poorly at identifying sentences that contain no policy

statement. Using the same comparative statistics as before, we can see that coders overall

performance decreases dramatically in these experiments. Unpacking the results highlights

why this is the case.

As before, MT coders are unable to recognize sentences that experts code as having no

policy statement. In this case, however, because the experiment presents only a binary choice

the MT workers heavily over-code whichever policy area the experiment specifies. While it is

16Given the results from the previous section, the decision was made to use the low-threshold test as qualifi-
cation for these additional test.
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the case that MT coders do slightly better at recognizing non-policy sentences, the gains are

insignificant.

The results of these experiments, combined with the observations from the previous exper-

iments, show that non-expert coders on MT have difficulty identifying sentences that make no

policy statement. Put in a different – perhaps more accurate way – when MT coders are asked

to categorize something they seem to have difficulty not applying some category to it. The

subtlety of a null coding may be beyond the capacity of what non-expert coders are capable

of. More likely, however, is that because MT coders are deeply primed by the platform to al-

ways code, additional care must best taken ensure that the null coding is perceived as equally

valuable and likely.

If it is the case, however, that most MT coders are predisposed against the notion of giving

something a null code, then well-designed coding tasks on MT must identify coders that do

not have this predisposition quickly. This way those coders can be incentived to continue

to perform coding, while those that under-perform are kept out. In the following section I

investigate how individual coders perform over the course of many HITs to examine what – if

any – affect previous work has on worker performance.

3.4.3 Coder Performance Progression

Recall that in each HIT a worker is asked to code six sentence units, and that an individuals

worker is limited to submitting 50 HITs total. It is possible, therefore, to track the cumulative

performance of individual coders in each experiment. For each HIT, I can calculate the percent

agreement an individual coder achieves with the experts, and as they accept more HITs, recal-

culate based on additional codings. With this information we can observe how much individual
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coder performance fluctuates. It is also possible to observe the aggregate performance of coders

with a given experiment, and trends therein.

In Figure 3.7, the performance of MT coders in the “no qualification” experiment is plotted.

Each red line represents the performance of an individual coder. The vertical dashed gray lines

represent the HIT counts, so line segments between these dashed lines represent changes in

performance from HIT-to-HIT; and, the longer the red line the more HITs a coder submitted.

When a coder only submitted one HIT their work is represented as a single red dot at extreme

left of the plot. The darker the dot, the more single-submission were collected at a given

performance level. For example, we see a few workers submitted all incorrect codings on their

first HIT, but then quit. Also, the darker red a line, the more coders followed that exact

performance path. This behavior is particularly prominent for workers starting in the 25th to

75th percentile of performance, and then fades as workers leave the task. The blue line with

95% confidence-intervals is the linear fit to all of the data in the experiment.

There are many interesting features of coder participating and performance highlighted by

this analysis. First, most coders submit multiple HITs. In fact, in the no qualification test

experiment featured in Figure 3.7 only 32% of coders submitted only a single HIT. This is by

far the highest percentage of single-submission workers, with the percentages ranging between

0% − 15% for the other experiments. In addition many coders participate in the maximum

number of HIT available, providing an ample historical perspective on their performance.
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Figure 3.7: Coder Performance for “No Qualification” Experiment
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(a) Low-Threshold (b) High-Threshold

(c) Economic-only (d) Social-only

Figure 3.8: Coder Performance For All Qualified Experiments
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This result is important because it provides evidence that future designs should include a

mechanism for assessing coder performance both before they are allowed participations; as with

the qualification test, as well as while they are participating in the task. If most coders are

submitting multiple HITs, than a well-specified model of adjudication can include a dynamic

assessment of coder performance. Also, evidence from these experiments suggests that the

number of MT workers submitting coding for given sentence unit does affect the likelihood

that the consensus coding will match expert coding17. As such, there should be little to no

affect from further filtering workers after they are allowed to participate.

Figure 3.8 provides the coder performance graphs for the remaining four experiments, and

all highlight a second key observation of the analysis. Coder performance quickly reaches

a steady level of quality, and remains at that level for the length of participation. More

importantly, this stability is not path dependent, i.e, it is not explicitly a function of their

performance at the outset. Many coders across the experiments perform very well – or very

poorly – to start, but as they do more work their performance quickly adjusts up or down,

and then reaches a steady level. For a more detailed view of coder performance stability see

Figures 17 and 18 in Appendix C.

These plots also show several clear groupings of coder quality, where stable coders group

in high- mid- and low-quality tiers. This is most apparent in the economic- and social-only

experiments. This groups likely separate those coders that are able to identify sentences with

no policy statements, from those that are not. In fact, many coders in the high-quality tier

very closely resemble expert coders, maintaining percent agreements statistics well above 0.90.

It may be that the most well-designed crowd-sourced coding tasks will utilize a combination

17See Table 13 in Appendix C
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of these observations. If one were able to design a mechanism that leveraged this information,

the mechanism would be able to identify and reward high-quality coders systematically. This

would almost certainly result in higher-quality output

In the next, and final, exposition of the results I examine the MT coders’ ability to identify

policy scale as a second-order coding.

3.4.4 Measuring Party Position Shifts

There are three general ideological scaling constant that exist in the manifestos used in these

experiments. The Conservative party has makes systematically more conservative/right state-

ments; the Liberal Democrats make systematically more liberal/left statements; and the Labor

party makes a dramatic shift to the center from the left between 1987 and 1997. To examine

if the MT coders are able to identify these ideological positions, I analyze the distribution of

mean policy scale codings for sentence units with consensus economic and social codings for

all experiments.

Figures 3.9 and 3.10 illustrate the results of policy scale coding for consensus economic

and social sentence units, respectively. It is necessary to limit these analyses to sentences that

achieve consensus coding by the non-experts given the hierarchical structure of the coding

schema. Given the nuanced nature of ideological statements in party manifestos, and non-

expert coder performance in the previous section, our expectations for performance in this

regard may be tepid. The results, however, are promising.

The plots in Figures 3.9 and 3.10 are positioned as a grid. Each column corresponds to

sentence units from a given party manifesto, and each row are likewise sentence units coded in
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Figure 3.9: Distribution of Average Scales for MT Consensus “Economic” Sentences, by Year
and Party

the given experiment18. The x-axis corresponds to the five-point scale. The box plots on the

y-axis are the distribution of mean policy scale values for consensus coded sentence units.

At first glance, it may appear that coders interpret texts as not having a policy scale, or the

zero value on the five-point scale. On the contrary, this is simply the result of the high variance

18The economic- and social-only experiments were excluded from this analysis because the results add no
additional insight.
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Figure 3.10: Distribution of Average Scales for MT Consensus “Social” Sentences, by Year and
Party

in these mean estimates. In fact, the “neither; nor” policy scale coding is the least likely coding

across all of the experiments. This follows the pattern observed in the previous analyses: MT

coders as biased against a null coding, which carries down the hierarchical scheme to policy

scale.

Despite this persistent shortcoming of the MT coders, there are several positive results in

116



www.manaraa.com

these data. First, in both the low- and high-threshold tests, the coders are systematically coding

the Liberal Democrat texts as liberal and left for both economic and social policy statements,

respectively. Likewise, coders are also systematically coding text from the Conservative as

being more conservative/right, except for a significant bias to the left for coders in the high-

threshold experiment. It is unclear what caused this bias.

Finally, coders in experiments including a qualification test appear to be picking up on

ideological changes in the Labor party between 1987 and 1997. This can be observed in both

mean shifts to the center, and the overall increased variance of the mean scales in these results.

The magnitude of this shift in the MT codings, however, is considerably smaller than what has

been observed by previous expert codings and the codings of experts in this research19.

3.5 Conclusions

I have presented the results of a series of experiments used to assess the viability of using the

Mechanical Turk platform to crowd-source political text coding. Using a simple hierarchical

coding schema, multiple expert codings are gathered on party manifestos from three political

parties for two different years. The results of these expert codings are used to assess the quality

of codings gathered from non-experts on the MT platform using the same coding schema.

The results of these experiments provide considerable evidence to that crowd-sourcing is an

effective alternative method to generating quantitative categorization from text. When using a

well-designed mechanism for collecting non-expert codings en masse, the results compare quite

well to the results of multiple experts. There are, however, some important features of the MT

environment that must be considered when using it for this type of work.

19See Figures 19 and 20 in Appendix C for visualizations of expert coding of policy scales.
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First, and most importantly, workers in the MT platform have tremendous difficulty identi-

fying a null category. In these experiments this manifested as the extremely poor performance

on identifying sentences as not having a policy area, or not expressing a policy scale. It may be

that because of the nature of work on MT, workers are predisposed to finding a categorization

even when one does not exist. Though not the majority, many coders were – however – able

to accurately do this type of subtle coding.

For this reason, it is crucial that well-designed MT tasks have a mechanism for identifying

these high-quality coders quickly, and rewarding them appropriately to incentives them to

continue to do work. Additionally, low-quality coders should be identified equally quickly and

filtered out of the task. The observation that the vast majority of workers do multiple HITs,

and that their performance quickly reaches a – and measurable – state, suggests that a dynamic

mechanism for tracking performance should be included to perform this adjudication.

Crowd-sourcing is a cost-effective, highly scalable, and extremely flexible alternative means

for generating quantitative coding data. The results of this research indicate its future as a

methodological tool in the discipline are quite bright.
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Final thoughts

The work presented in this thesis has attempted to highlight the power of computational

methods for political science. The focus here has been on expanding the reader’s perspective

on what constitutes a “computational method” in the discipline. In addition to generative

methods, each chapter has presented a core problem from political science, and approached it

using computational methods.

In Chapter 1, “Networks, Collective Action, and State Formation,” the question is posed:

how do social network structure affect how groups make choices about contributing to a public

good? Given the nature of public goods, it seems natural that these networks would play a

role in their establishment. No previous research, however, had examined this in a systematic

way.

One of the primary reasons for the lack of research in this area is it is very difficult to collect

and test data on social structure that have naturally formed in meaningfully different ways.

As such, in this chapter a generative model is designed to test how network variations affect

how agents play a network variant of a provision point public goods game. In this case the

computational method is an agent-based model, which is used because of the difficulty presented

by collecting real data, along with the flexibility offered to test many different network types
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in a single model.

The results provides strong evidence that agents playing the game on a network formed using

a “preferential attachment” mechanism are much more likely to coordinate on the provision

of public goods. This result holds regardless of the decision criterion being used by players to

contribute to the public good. In the second chapter the focus shifts from generating classic

networks structures, to studying real-world complex networks and attempting to model their

dynamics.

In this chapter, “Modeling Network Structure Using Graph Motifs,” I introduce a novel

approach to modeling the dynamics of networks by studying the distribution of a set of graph

motifs constituting a given network. The vast majority of network analysis done within po-

litical science – and social science more generally – focuses on statistical measurement and

modeling of static networks. It is difficult to study network dynamics analytically because of

the intractability of the inherent dependency structures present in these structures.

In order to begin exploring how these dynamics might be studied, the graph motif model

is designed computationally, and several models are specified and tested to assess its ability

to model network dynamics. A key criterion for dynamic network models is their ability to

accurately model the growth of networks over time. To test this, a time-series of a co-authorship

from the Conflict Studies eJournal was analyzed to illustrate how a graph motif model could

be used to model the growth of a network over time.

The results are quite promising and highlight the value of using graph motifs to model

networks. By utilizing computational methods to specify these models the technique has

inherent flexibility, which is useful when attempting to model the naturally complex nature of

human social interactions.
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In the final chapter the methodological application moves away from simulation to exper-

imentation. Here, the computational method is crowd-sourcing, and it is used as an alterna-

tive means of generating categorical data. In “Methods for Collecting Large-scale Non-expert

Text Coding,” the innovation is the application of moving the task of coding text away from

single-expert composition, to dispersed, large-scale, collection of non-expert coding. To do

this, several experiments were conducted on Amazon’s Mechanical Turk platform to assess the

viability of crowd-sourcing for this work.

The results of these experiments provide considerable evidence that crowd-sourcing is an

effective alternative method for generating quantitative categorization from text. The key

insight from this work is that such efforts must be meticulously designed to account for the

particularities of the labor pool available on MT. Most notably, non-expert coding exhibit

a significant bias against the identification of a null, or “does not fit,” category. As such,

researchers attempting to use crowd-sourcing for text coding must be accurately aware of this

bias when designing experiments.

The use of computational methods in political science presents – perhaps – the largest

methodological innovation of the discipline to date. Their application is limited only by the

imagination of a researcher, and their willingness to learn new tools. This thesis has attempted

to highlight the potential of computational methods within the discipline. The results from

each chapter show that these methods have a very fruitful present, and an extremely promising

future, in the discipline.
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Appendicies

Appendix A: Pseudocode for Network Variant of Public

Goods Game

All code for the above model can be downloaded here: http://github.com/drewconway/

StateBuilding. Below is a brief “pseudocode” implementation of the model, provided as an

explanatory supplement to the actual code for non-programmers.

Algorithm 3 Agent Class

Require: id and type
Ensure: id ∈ Z+, type ∈ {0, 1, 2, 3, 4} and disposition ∈ {0, 1}
network = ∅
c = 0.0
mnet = 0.0
{...}
{Also, supporting class operations for getting and setting parameters}
{...}
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Algorithm 4 Environment Class

Require: population
Ensure: population ∈ Z+

statewealth =
∑population
i=1 iwealth

w = 1
4 (statewealth)

for all agents ∈ population do
create networks

end for
for all agents ∈ population do

set mnet
end for
for all agents ∈ population do

set contribution level based on type, disposition and mnet
end for
statecontributions =

∑population
i=1 (icontribution)(iwealth)

if statecontributions ≥ w then
provision = TRUE

else
provision = FALSE

end if
{...}
{Also, supporting class operations for getting and setting parameters, and outputting data}

{...}
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Appendix B: Analysis of SSRN Conflict Studies eJournal

The network data used in the above paper is a novel contribution to both the network science

and political science literatures. As such, it is useful to provide a separate—more detailed—

analysis of this data in addendum to the description already provided. As an initial step in the

analysis it will be useful to isolate the part of this data with the most meaningful structure.

At the time of writing, the entire network contains 5,516 nodes and 4,457 edges, giving it a

density of 1.5e−4. Furthermore, within this sparsely connected network there are 1,493 weakly

connected components, many of which are simple dyads or star graphs.

As such, for the remainder of this analysis the focus will be on the largest weakly connected

component, also referred to as the main component of the network. Focuses only this subgraph

is helpful as it allows for traditional network analysis techniques to be applied to a single

fully-connected component. Unfortunately, many graph theoretic metrics cannot be applied

to networks for which there are some set of nodes that cannot be reached through graph

traversal. For example, betweenness centrality; defined as the proportion of shortest paths

that pass through a given node, is undefined for graphs with multiple components because

there is infinite distance between nodes in different components.

Also, because the co-authorship network is a natural bipartite graph with authors connected

to papers it is possible to produce projections of the graph into affiliations networks. In addition

to the main component of the full network, we may also analyze the network formed by author-

to-author and article-to-article affiliations. This is done in order to understand how these two

modes of the bipartite network interact with one another, which allows for comparison between

the two networks. Table 3 below provides basic descriptive statistics of these three networks.
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Main Component Authors Articles
Number of Nodes 1,190 745 445
Number of Edges 1,522 4,574 2,728
Mean Degree∗ 1.279 12.279 12.261
Density 0.001 0.017 0.028
∗ For the main component this is mean in-degree

Table 7: Descriptive statistics for entire network and projections

As can be seen from the mean degree values for the affiliations networks, despite the rela-

tively sparsity of the full-network there is actually quite a lot of collaboration occurring within

the Conflict Studies eJournal. Clearly, however, mean degree does not fully capture the col-

laborative dynamics of this network. A better measure is the degree distribution, as this will

indicate the frequencies of various collaborations, i.e., number of times individuals have co-

authored articles in the network. Figures 13 and 14 illustrate the degree distributions for the

authors and articles affiliations networks respectively.

There are many interesting features of this network that become apparent when examining

these distributions. First, there is significant variation in collaboration among authors within

the network. The vast majority of authors have co-authored with up to twenty different

individuals within the population of the network. Having more than twenty different co-

authors, however, is extremely rare. Likewise, the articles network shows that most articles

share up to ten authors, but having more than ten is considerable rarer. Interestingly, sharing

the same authors thirty-five times is nearly as common as having three or fewer. Upon further

examination of the data this appears to be the result of a single entity, the International

Council on Human Rights Policy (ICHRP), single-authoring thirty-five articles, which resulted

in a completely connected clique within the graph for this single author. Fortunately, this was

the only occurrence of such an anomaly in the data.
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Authors Articles
χ2 1,672 1,083
Degrees of freedom 1,650 1,064
p-value 0.347 0.336

Table 8: χ2 goodness-of-fit test of affiliations networks to Poisson

In addition to exploring the degree distributions to understand the collaboration mecha-

nisms presents in the network it is also illuminating to test the fit of these distributions against a

theoretical distribution. Specifically, purely random graphs—such as the Erdõs-Rènyi model—

are well known to follow a Poisson distribution (Newman et al., 2001). As such, using the

mean degree values from Table 3 as the theorized shape parameters of a Poisson it is possible

to test the fit of both the authors and articles affiliations networks. Table 4 above shows the

results of a χ2 goodness-of-fit test for the degree distributions to the theorized Poisson. As can

be seen, these data are fairly poor fit to these distributions, which provides evidence that the

connectivity dynamics are not random.

This is encouraging, if the data were a good fit it would indicate unnatural skewing of

the degree, calling into question the validity of the data for study. The poor fit of these data

to the Poisson is highlighted more starkly in Figures 15 and 16, which show the differences

between the theorized Poisson count and the empirical degree distribution for the authors and

articles networks respectively. What is clear from these figures is that both networks have

considerably more nodes with degree in the head of the distributions than would be predicted

by the theorized Poisson, leading to their poor fits. As to be expected, the distributions have

a heavy tail, a characteristic present in many large social networks.20

Finally, a popular method in the statistical analysis of networks is to identify so-called “key

20See (Clauset et al., 2009) for of evidence of this empirical result.
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actors,” based on various centrality metrics. There are many metrics by which this centrality

can be defined, including degree (number of edges), betweenness (presence in shortest paths),

closeness (geodesic distance to all nodes), or Eigenvector Centrality (Freeman, 1979). For the

purposes of this analysis I will be using Page Rank, which is closely related to Eigenvector

Centrality and was originally introduced by Sergey Brin and Lawrence Page—the founders

of Google—as the primary metric by which their World Wide Web search engine ranked the

relevance of web pages (Brin and Page, 1998). This metric is well suited for this analysis as it

was designed to overcome the variational limitations present in Eigenvector Centrality and is

tailored to ranking inter-related documents.

As there are so many centrality measures available, it is often useful to show the relationship

between two metrics within a single network. Given the high levels of interdependence among

these metrics, the expectation is that in most cases they will have a roughly linear relationship,

i.e., actors with high values for one centrality metric will also have high values for another. The

variation, however, is also useful because deviation from this linear relationship can indicate a

unique structural position for certain nodes. In this case, because Page Rank is the primary

metric I will use betweenness centrality as the secondary metric. The former metric focuses

on structural centrality, i.e., weights those nodes at a network’s core higher, while the latter

focuses on structural singularity, i.e., weights those nodes whose position represent cut-points

in the network.

For example, actors that are outliers on the PageRank dimension are those that are at the

core of the network, but likely only have a few connections into that core; hence they are on a

fewer number of shortest paths. Such actors may be those relatively new to the network, but

having connections to the core indicates high-value. In a co-authorship network, these actors
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may be those scholars or subjects emerging within a sub-discipline. Likewise, outliers on the

betweenness centrality dimension indicate actors that act as bridges between two disparate

region of a network. In a co-authorship network these actors may be those scholars or subjects

that blend research from multiple areas of the sub-discipline, or newly emergent research areas.

Figures 17 and 18 are scatter plots of the Page Rank and betweenness centralities for all

nodes in the authors and articles networks respectively. A naive linear model was fit to these

metrics, and the absolute values of the residuals of these regressions were used to size the

points in these plots. This is done to highlight those outliers on either dimension, which may

be considered the key-actors of these networks. The point labels themselves correspond to the

SSRN ID numbers for each author and paper. In the authors network the linear model has an

R2 value of 0.542 and a Pearson’s correlation value of 0.736, indicating a fairly weak linear fit,

but relatively high correlation—precisely what we would expect for such an analysis given the

many outliers. The relationship is a bit weaker in the articles network but still worthy of this

analysis; with an R2 value of 0.477 and a correlation of 0.691.

In both figures there are several actors that are clear outliers on both dimensions, as well as

actors that have high values for both metrics. For convenience, Tables 5 and 6 identify the top

ten outliers on each dimension for both networks. To buttress these data, Tables 7 and 8 list

the top fifty authors and articles by Page Rank respectively. These tables tell an interesting

story about the type of authors using Conflict Studies eJournal to distribute research, and the

structure of their collaboration.

For the authors network there is a clear dominance by legal scholars Thirty-two out of the

fifty highest ranked authors are from law schools. Perhaps more shocking, none of the authors

in this table are political scientists. In fact, with the exception of Daron Acemoglu, none of the
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scholars listed in Table 7 have ever published in a top-tier political science journal.21. Looking

at the highest ranked papers, however, it is clear that legal issues related to conflict are the

most prevalent within this eJournal. Given the time period in which these data were collected

this follows logically; with two on-going wars wherein many domestic and international legal

issues were raised this was a topic of great relevance.

Finally, the bottom panel of Table 6 is interesting in that it indicates security issues related

to climate change acts as a bridge between other areas of study within the network—with

three articles specifically focused on the topic. As time proceeds, it will be interesting to see if

this area of research becomes most central as the legal issues related to America’s foreign wars

subside. Unfortunately, these results provide evidence that this particular eJournal may not

be the most relevant to the study of collaboration with political science as a discipline given

the lack of political scientists at its core.

21A search of American Political Science Review, American Journal of Political Science, Journal of Politics,
and Quarterly Journal of Political Science was done for each author in Table 7.
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Figure 11: Degree distribution of authors affiliations network
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Figure 12: Degree distribution of articles affiliations network
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Figure 13: Goodness-of-fit plot for authors network degree to Poisson distribution
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Figure 14: Goodness-of-fit plot for articles network degree to Poisson distribution

131



www.manaraa.com

Key Actors Analysis for Author Network
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Figure 15: Key actor plot for authors network
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Figure 16: Key actor plot for articles network
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Author Name Institution SSRN ID Residual
Outliers on Page Rank dimension
1 Kenneth Anderson Washington College of Law, American University 235051 -9442.03
2 Ganesh Sitaraman Harvard Law School 1107794 -8886.40
3 Amos N. Guiora University of Utah - S.J. Quinney College of Law 495752 -7770.47
4 Eric Talbot Jensen Fordham University - School of Law 812464 -7472.41
5 Geoffrey S. Corn South Texas College of Law 557106 -7093.83
6 Richard W. Murphy Texas Tech University - School of Law 105603 -6863.07
7 Afsheen John Radsan William Mitchell College of Law 453088 -6863.07
8 Curtis J. Milhaupt Columbia Law School 63865 -5588.80
9 Ronald J. Gilson Stanford Law School 17982 -5588.80

10 Eric Neumayer London School of Economics and Political Science 114994 -5585.64
Outliers on betweenness centrality dimension
1 Eric A. Posner University of Chicago - Law School 33688 35949.53
2 Simon Chesterman New York University - School of Law, Singapore Programme 244368 30071.85
3 Lucian A. Bebchuk Harvard Law School 17037 22280.72
4 Peter J. Boettke George Mason University - Department of Economic 182652 18827.85
5 Austin Murphy Oakland University - School of Business Administration 65568 16272.93
6 Luigi Zingales University of Chicago Booth School of Business 2092 14351.57
7 Jeremy Waldron New York University (NYU) - School of Law 82885 12156.01
8 Paul Schiff Berman Sandra Day O’Connor College of Law 159950 11588.07
9 Fabien Gelinas McGill University 333390 10690.32

10 Michael C. Jensen Harvard Business School 9 9570.30

Table 9: Key outliers analysis of authors network
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Article Title (truncated at 60 characters) # of Authors SSRN ID Residual
Outliers on Page Rank dimension
1 Counterinsurgency, the War on Terror, and the Laws of War 1 1354677 -3500.62
2 The International Legality of U.S. Military Cross-Border Op. . . 1 1296733 -3417.46
3 States of Exception: Regulating Targeted Killing in a Globa. . . 1 1574342 -3412.21
4 Unlawful Killing with Combat Drones: A Case Study of Pakist. . . 1 1501144 -2970.06
5 Measure Twice, Shoot Once: Higher Care for CIA Targeted Kil. . . 2 1625829 -2895.95
6 Legality of Lethality: Paradigm Choice and Targeted Killing. . . 1 1583985 -2846.91
7 A Trial to End All Terrorism: How America Could Have Won th. . . 1 1526872 -2827.02
8 Due Process and Targeted Killing of Terrorists 2 1349357 -2809.58
9 The Dark Sides of Convergence: A Pro-Civilian Critique of t. . . 1 1543482 -2683.09

10 ‘Drones II’ - Kenneth Anderson Testimony Submitted to U.S. . . . 1 1619819 -2661.58
Outliers on betweenness centrality dimension
1 Climate Change and Human Rights: A Rough Guide 1 1551201 12397.30
2 What Causes Terrorism? 2 1148682 8652.95
3 Climate Change, Conflict and Security: International Law Ch. . . 1 1485175 5914.01
4 The Story of El Masri v. Tenet: Human Rights and Humanitari. . . 1 1311622 5593.85
5 Cyberwarfare: Law & Policy Proposals for U.S. & Global Gove. . . 1 1437002 5550.85
6 Implementing the Responsibility to Protect 1 1576664 5406.87
7 The Consequences of Radical Reform: The French Revolution 4 1369681 5387.69
8 The ‘Bush Doctrine’: Can Preventive War Be Justified? 2 1396754 5254.80
9 Climate Change and Human Rights: Unpacking the Issues 1 1581555 5234.77

10 Two Crises of Confidence: Securing Non-Proliferation and th. . . 1 1120810 4539.87

Table 10: Key outliers analysis of articles network
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Author Name Institution SSRN ID Page Rank
1 Simon Chesterman New York University - School of Law, Singapore Programme 244368 0.0076
2 Mary Ellen O’Connell Robert & Marion Short Chair in Law 375701 0.0065
3 Kenneth Anderson Washington College of Law, American University 235051 0.0065
4 Kishore Mahbubani Lee Kuan Yew School of Public Policy 520540 0.0052
5 Amos N. Guiora University of Utah - S.J. Quinney College of Law 495752 0.0051
6 Joseph Raz Columbia Law School 82848 0.0047
7 Jordan J. Paus University of Houston Law Center 47938 0.0046
8 Lucian A. Bebchuk Harvard Law School 17037 0.0044
9 Eric A. Posner University of Chicago - Law Schoo 33688 0.0043

10 Stuart Malawer George Mason University - School of Public Policy 1073612 0.0039
11 Jeremy Waldron New York University (NYU) - School of Law 82885 0.0038
12 John Yoo University of California at Berkeley School of Law 180248 0.0038
13 Michael C. Jensen Harvard Business School 9 0.0037
14 Jeremy J. Sarkin Hofstra University - School of Law 345702 0.0037
15 Gregory Shaffer University of Minnesota - Twin Cities - School of Law 85914 0.0037
16 Ali Khan Washburn University - School of Law 56125 0.0036
17 Robert J. Delahunty University of St. Thomas School of Law (Minnesota) 522647 0.0034
18 Luigi Zingales University of Chicago Booth School of Business 2092 0.0033
19 Ganesh Sitaraman Harvard Law School 1107794 0.0033
20 Daniel Bodansky Arizona State University Sandra Day O’Connor College of Law 366811 0.0033
21 Jonatan Pinkse University of Amsterdam - Amsterdam Business School (ABS) 363448 0.0032
22 Ans Kolk University of Amsterdam - Amsterdam Business School (ABS) 105013 0.0032
23 Eric Talbot Jensen Fordham University - School of Law 812464 0.0031
24 Austin Murphy Oakland University - School of Business Administration 65568 0.0031
25 Daron Acemoglu MIT - Department of Economics 18621 0.0031

Table 11: Top 25 Authors by Page Rank
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Article Title (truncated at 60 characters) # of Authors Article SSRN ID Page Rank
1 What Causes Terrorism? 2 1148682 0.0088
2 Two Crises of Confidence: Securing Non-Proliferation and th. . . 1 1120810 0.0076
3 The ‘Bush Doctrine’: Can Preventive War Be Justified? 2 1396754 0.0075
4 Teaching an Old Dog New Tricks: Operationalizing the Law of. . . 2 1507291 0. 0069
5 Counterinsurgency, the War on Terror, and the Laws of War 1 1354677 0.0068
6 Climate Change, Conflict and Security: International Law Ch. . . 1 1485175 0.0066
7 Transnational Armed Conflict: A ‘Principled’ Approach to th. . . 2 1256380 0.0066
8 Cyberwarfare: Law & Policy Proposals for U.S. & Global Gove. . . 1 1437002 0.0065
9 The International Legality of U.S. Military Cross-Border Op. . . 1 1296733 0.0064

10 Predators Over Pakistan 1 1561229 0.0064
11 Anticipatory Self-Defence and International Law - A Re-Eval. . . 1 1264883 0.0063
12 Terrorism, Criminal Prosecution, and the Preventive Detenti. . . 1 1306733 0.0063
13 States of Exception: Regulating Targeted Killing in a Globa. . . 1 1574342 0.0061
14 The Language of Law and the Practice of Politics: Great Pow. . . 1 1472068 0.0061
15 The Consequences of Radical Reform: The French Revolution 4 1369681 0.0061
16 A Global Model for Forecasting Political Instability 8 1531942 0.0061
17 Defining Armed Conflict 1 1392211 0.0060
18 A Trial to End All Terrorism: How America Could Have Won th. . . 1 1526872 0.0058
19 The Structure of Terrorism Threats and the Laws of War 1 1616255 0.0057
20 The Kosovo Crisis: A Dostoievskian Dialogue on Internationa. . . 2 1334382 0.0053
21 Mapping the Concepts Behind the Contemporary Liberalization. . . 1 1594764 0.0053
22 International Common Law: The Soft Law of International Tri. . . 2 1267446 0.0053
23 ‘Drones II’ - Kenneth Anderson Testimony Submitted to U.S. . . . 1 1619819 0.0052
24 Leashing the Dogs of War: The Rise of Private Military and . . . 1 1162526 0.0051
25 Privatizing Peacekeeping: The Regulatory Preconditions for . . . 1 1224653 0.0051

Table 12: Top 25 Articles by Page Rank
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Appendix C: Additional Statistical Analysis of MT Coding

Data

A simple logistic regression model is fit to data from all of the experiments to test of the

number of MT coders for each sentences affects the likelihood that the consensus coding will

match the experts. The results for all experiments is effectively null, support the claim that

the number of coders does not affect the consensus coding.

Experiment Type
(Intercept) # of MT Coders Sentences AIC BIC logL

No Qual. 0.31 0.05∗ 1,315 1,697.73 1,739.18 -840.86
(0.16) (0.02)

Low-Threshold 0.99∗ -0.02 1,393 1,705.04 1746.95 -844.52
(0.16) (0.02)

High-Threshold 0.36∗ 0.03 1,250 1,666.09 1,707.14 -825.05
(0.13) (0.03)

Econ-only 0.55∗∗ -0.01 945 1,262.66 1,301.47 -623.33
(0.20) (0.02)

Social-only 0.66∗∗ -0.03 955 1287.75 1326.64 -635.87
(0.21) (0.02)

Standard errors in parentheses
∗ indicates significance at p < 0.05, ∗∗ at p < 0.01

Table 13: Logistic Regression for Number of MT Coders Per-Sentence on Agreement, by
Experiment

To understand how volatile coder performance is over time a 5-HIT moving volatility index

is defined as the standard deviation of each coder’s cumulative performance. As the standard

deviation on cumulative performance decreases, the more stable our estimates of coder perfor-

mance become. From this analysis it is clear that after 20 HITs, coder performance becomes

very stable.
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Figure 17: Coder Volatility for “No Qualification” Experiment
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(a) Low-Threshold (b) High-Threshold

(c) Economic-only (d) Social-only

Figure 18: Coder Volatility For All Qualified Experiments
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While coder’s reach a relative steady-state in performance, it is not the case that restricting

codings to those received after the “burn-in” period improves overall coding quality. As can

be seen from the coder performance plots in Figures 3.7 and 3.8, those steady-state codings

can still be of a mid-to low quality. Table 14 reports the percent agreement for all of the

experiments when using only those codes from coders submitted after their 20th HIT. There

are modest gains, but by any meaningful comparison they are unchanged.

Experiment Expert Coding MT % Agreement
Economic 0.70

No Qual. Social 0.85
Neither 0.28
Economic 0.83

Low-Threshold Social 0.96
Neither 0.24
Economic 0.71

High-Threshold Social 0.86
Neither 0.12

Economic 0.92
Economic-only Neither 0.25

Social 0.25
Social-only Neither 0.95

Table 14: Agreement Between Experts and MT Coders for Each Sentence Type for coders
submitting more than 20 HITs, by Experiment

In section 3.4.4 the distribution of non-expert coding of policy scales are analyzed. The

results are not impressive, however, it could be the case that the random sample of sentences

used for the experiments were unrepresentative of policy scale shifts included in each manifesto.

If this occurred, then the policy scale coding of experts for these subsets should also show

meager shifts in policy among the parities over the time period.

Figures 19 and 20 replicate Figures 3.9 and 3.10 from section 3.4.4 using expert codings.

Here, it is clear that the experts are picking up the expected policy shifts, thus reinforcing the

observation of non-experts poor performance in coding policy scales.
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Figure 19: Distribution of Average Scales for Experts “Economic” Sentences Used in Experi-
ments, by Year and Party
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Figure 20: Distribution of Average Scales for Experts “Economic” Sentences Used in Experi-
ments, by Year and Party
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Appendix D: Qualification Test and HIT

Below are screen shots of both the HIT and qualification test interface used for these exper-

iments. You will note that the formatting differs between these two interfaces. The reason

for this is MT does not allow qualification tests to be hosted externally, meaning that they

must conform to MT’s templates. The HIT is hosted externally, and is therefore completely

customizable.

Figure 21: Example HIT Interface
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Figure 22: Example Qualification Test Interface
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Appendix E: Coding Instructions

The text below are a verbatim copy of the instructions given to MT workers before accepting a

HIT in these experiments. The formatting of this text varies from that used in the HIT due to

printing requirements. To view the text as it was formatted for MT worker visit: http://s3.

amazonaws.com/aws.drewconway.com/mt/experiments/cmp/html/instructions.html.

What this task is about

This task involves reading sentences from political texts and judging whether these deal

with economic or social policy.

The sentences you will be asked to interpret come from political party manifestos. Some of

these sentences will deal with economic policy; some will deal with social policy; other sentences

will deal with neither economic nor social policy. We tell you below about what we mean by

“economic” and “social” policy.

First, you will read a short section from a party manifesto. For the sentence highlighted

in red, enter your best judgment about whether it mainly refers to economic policy, to social

policy, or to neither.

If the sentence refers to economic policy, select “economic” in the drop down menu; if it

refers to social policy, select “social”. If the sentence does not refer to either policy area, select

Not Economic or Social – in this case you will move directly to the next sentence.

If you select economic or social, you will be shown a policy scale. Use this to give your best

judgment of the sentence in terms of how much it is left or right wing (for economic policy) or

liberal or conservative (for social policy). We tell you below about what we mean by left and
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right etc..

For example, if you see a sentence containing what you think is very right wing economic

policy, select the economic policy area from the drop down menu and click very right on the

economic policy scale. If you think it has a position that is left-wing, but not very left wing,

click left.

If you believe the sentence expresses a centrist position on economic or social policy OR con-

cerns economic or social policy but does not express any clear position, select the appropriate

policy category from the drop down menu, as above, and then click the neither. . . nor. . . position

on the scale.

Now we need to tell you about what we mean by economic and social policy, and by left

and right, liberal and conservative.

What is economic policy? What are left or right economic poli-

cies?

Economic policies deal with all aspects of the economy, including:

• Taxation;

• Government spending;

• Services provided by the government or other public bodies;

• Pensions, unemployment and welfare benefits, and other state benefits;

• Property, investment and share ownership, public or private;

• Interest rates and exchange rates;

• Regulation of economic activity, public or private;
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• Relations between employers, workers and trade unions.

Left economic policies tend to favor one or more of the following:

• High levels of services provided by the government and state benefits, even if this implies

high levels of taxation;

• Public investment. Public ownership or control of sections of business and industry;

• Public regulation of private business and economic activity;

• Support for workers/trade unions relative to employers.

Right economic policies tend to favor one or more of the following:

• Low levels of taxation, even if this implies low levels of levels of services provided by the

government and state benefits;

• Private investment. Minimal public ownership or control of business and industry;

• Minimal public regulation of private business and economic activity;

• Support for employers relative to trade unions/workers.

Social policies deal with aspects of social and moral life, relationships between social

groups, and matters of national and social identity, including:

• Policing, crime, punishment and rehabilitation of offenders;

• Immigration, relations between social groups, discrimination and multiculturalism;

• The role of the state in regulating the social and moral behavior of individuals.
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Liberal social policies tend to favor one or more of the following:

• Policies emphasizing prevention of crime, rehabilitation of convicted criminals;

• The right of individuals to make personal moral choices on matters such as abortion, gay

rights, and euthanasia;

• Policies penalizing discrimination against particular social groups and/or favoring a mul-

ticultural society.

Conservative social policies tend to favor one or more of the following:

• Policies emphasizing more aggressive policing, increasing police numbers, conviction and

punishment of criminals, building more prisons;

• The right of society to regulate personal moral choices on matters such as abortion, gay

rights, and euthanasia;

• Policies favoring restriction of immigration, and/or opposing explicit provision of state

services for minority cultures.

Text Examples

Below we provide two examples of text from the manifestos and instructions on how they

should be coded, and why.

Example 1: Right economic policy:

With a Conservative Government, all that has been changing. We were determined

to make share-ownership available to the whole nation. Just as with cars, television

sets, washing machines and foreign holidays, it would no longer be a privilege of the

few
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The highlighted text should be coded as economic because it references ownership. In

addition, the text is right because it is promoting private ownership.

Example 2: Liberal social policy:

ALTERNATIVES TO PRISON. Every effort should be made to ensure that fine de-

faulters, elderly shoplifters and drunks are not sent to prison. Police cautions and

intermediate treatment should be more widely used. Where punishment is appropri-

ate, it should normally be community service rather than prison

The highlighted text should be coded as having to do with social policy because it references

policing. In addition the text is liberal because it promotes alternative punitive measures to

prison.
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